231 resultados para Axonal transport
Resumo:
Purpose This study explores recent claims that humans exhibit a minimum cost of transport (CoTmin) for running which occurs at an intermediate speed, and assesses individual physiological, gait and training characteristics. Methods Twelve healthy participants with varying levels of fitness and running experience ran on a treadmill at six self-selected speeds in a discontinuous protocol over three sessions. Running speed (km[middle dot]hr-1), V[spacing dot above]O2 (mL[middle dot]kg-1[middle dot]km-1), CoT (kcal[middle dot]km-1), heart rate (beats[middle dot]min-1) and cadence (steps[middle dot]min-1) were continuously measured. V[spacing dot above]O2 max was measured on a fourth testing session. The occurrence of a CoTmin was investigated and its presence or absence examined with respect to fitness, gait and training characteristics. Results Five participants showed a clear CoTmin at an intermediate speed and a statistically significant (p < 0.05) quadratic CoT-speed function, while the other participants did not show such evidence. Participants were then categorized and compared with respect to the strength of evidence for a CoTmin (ClearCoTmin and NoCoTmin). The ClearCoTmin group displayed significantly higher correlation between speed and cadence; more endurance training and exercise sessions per week; than the NoCoTmin group; and a marginally non-significant but higher aerobic capacity. Some runners still showed a CoTmin at an intermediate speed even after subtraction of resting energy expenditure. Conclusion The findings confirm the existence of an optimal speed for human running, in some but not all participants. Those exhibiting a COTmin undertook a higher volume of running, ran with a cadence that was more consistently modulated with speed, and tended to be aerobically fitter. The ability to minimise the energetic cost of transport appears not to be ubiquitous feature of human running but may emerge in some individuals with extensive running experience.
Resumo:
We report the study of the thermal transport management of monolayer graphene allotrope nanoribbons (size ∼20 × 4 nm2) by the modulation of their structures via molecular dynamics simulations. The thermal conductivity of graphyne (GY)-like geometries is observed to decrease monotonously with increasing number of acetylenic linkages between adjacent hexagons. Strikingly, by incorporating those GY or GY-like structures, the thermal performance of graphene can be effectively engineered. The resulting hetero-junctions possess a sharp local temperature jump at the interface, and show a much lower effective thermal conductivity due to the enhanced phonon–phonon scattering. More importantly, by controlling the percentage, type and distribution pattern of the GY or GY-like structures, the hetero-junctions are found to exhibit tunable thermal transport properties (including the effective thermal conductivity, interfacial thermal resistance and rectification). This study provides a heuristic guideline to manipulate the thermal properties of 2D carbon networks, ideal for application in thermoelectric devices with strongly suppressed thermal conductivity.
Resumo:
The US National Institute of Standards and Technology (NIST) showed that, in 2004, owners and operations managers bore two thirds of the total industry cost burden from inadequate interoperability in construction projects from inception to operation, amounting to USD10.6 billion. Building Information Modelling (BIM) and similar tools were identified by Engineers Australia in 2005 as potential instruments to significantly reduce this sum, which in Australia could amount to total industry-wide cost burden of AUD12 billion. Public sector road authorities in Australia have a key responsibility in driving initiatives to reduce greenhouse gas emissions from the construction and operations of transport infrastructure. However, as previous research has shown the Environmental Impact Assessment process, typically used for project approvals and permitting based on project designs available at the consent stage, lacks Key Performance Indicators (KPIs) that include long-term impact factors and transfer of information throughout the project life cycle. In the building construction industry, BIM is widely used to model sustainability KPIs such as energy consumption, and integrated with facility management systems. This paper proposes that a similar use of BIM in early design phases of transport infrastructure could provide: (i) productivity gains through improved interoperability and documentation; (ii) the opportunity to carry out detailed cost-benefit analyses leading to significant operational cost savings; (iii) coordinated planning of street and highway lighting with other energy and environmental considerations; iv) measurable KPIs that include long-term impact factors which are transferable throughout the project life cycle; and (v) the opportunity for integrating design documentation with sustainability whole-of-life targets.
Resumo:
Safety at railway level crossings (RLX) is one part of a wider picture of safety within the whole transport system. Governments, the rail industry and road organisations have used a variety of countermeasures for many years to improve RLX safety. New types of interventions are required in order to reduce the number of crashes and associated social costs at railway crossings. This paper presents the results of a large research program which aimed to assess the effectiveness of emerging Intelligent Transport Systems (ITS) interventions, both on-road and in-vehicle based, to improve the safety of car drivers at RLXs in Australia. The three most promising technologies selected from the literature review and focus groups were tested in an advanced driving simulator to provide a detailed assessment of their effects on driver behaviour. The three interventions were: (i) in-vehicle visual warning using a GPS/smartphone navigation-like system, (ii) in-vehicle audio warning and; (iii) on-road intervention known as valet system (warning lights on the road surface activated as a train approaches). The effects of these technologies on 57 participants were assessed in a systematic approach focusing on the safety of the intervention, effects on the road traffic around the crossings and driver’s acceptance of the technology. Given that the ITS interventions were likely to provide a benefit by improving the driver’s awareness of the crossing status in low visibility conditions, such conditions were investigated through curves in the track before arriving at the crossing. ITS interventions were also expected to improve driver behaviour at crossings with high traffic (blocking back issue), which were also investigated at active crossings. The key findings are: (i) interventions at passive crossings are likely to provide safety benefits; (ii) the benefits of ITS interventions on driver behaviour at active crossings are limited; (iii) the trialled ITS interventions did not show any issues in terms of driver distraction, driver acceptance or traffic delays; (iv) these interventions are easy to use, do not increase driver workload substantially; (v) participants’ intention to use the technology is high and; (vi) participants saw most value in succinct messages about approaching trains as opposed to knowing the RLX locations or the imminence of a collision with a train.
Resumo:
REASONS FOR PERFORMING STUDY An increased incidence of metabolic disease in horses has led to heightened recognition of the pathological consequences of insulin resistance (IR). Laminitis, failure of the weight-bearing digital lamellae, is an important consequence. Altered trafficking of specialised glucose transporters (GLUTs) responsible for glucose uptake, are central to the dysregulation of glucose metabolism and may play a role in laminitis pathophysiology. OBJECTIVES We hypothesised that prolonged hyperinsulinaemia alters the regulation of glucose transport in insulin-sensitive tissue and digital lamellae. Our objectives were to compare the relative protein expression of major GLUT isoforms in striated muscle and digital lamellae in healthy horses and during hyperinsulinaemia. STUDY DESIGN Randomised, controlled study. METHODS Prolonged hyperinsulinaemia and lamellar damage were induced by a prolonged-euglycaemic hyperinsulinaemic clamp (p-EHC) or a prolonged-glucose infusion (p-GI) and results were compared to electrolyte-treated controls. GLUT protein expression was examined with immunoblotting. RESULTS Lamellar tissue contained more GLUT1 protein than skeletal muscle (p = 0.002) and less GLUT4 than the heart (p = 0.037). During marked hyperinsulinaemia and acute laminitis (induced by the p-EHC), GLUT1 protein expression was decreased in skeletal muscle (p = 0.029) but unchanged in the lamellae, while novel GLUTs (8; 12) were increased in the lamellae (p = 0.03), but not skeletal muscle. However, moderate hyperinsulinaemia and subclinical laminitis (induced by the p-GI) did not cause differential GLUT protein expression in the lamellae vs. control horses. CONCLUSIONS The results suggest that lamellar tissue functions independently of insulin and that IR may not be an essential component of laminitis aetiology. Marked differences in GLUT expression exist between insulin-sensitive and insulin-independent tissues during metabolic dysfunction in horses. The different expression profiles of novel GLUTs during acute and subclinical laminitis may be important to disease pathophysiology and require further investigation.
Resumo:
Exhaust emissions from motor vehicles vary widely and depend on factors such as engine operating conditions, fuel, age, mileage and service history. A method has been devised to rapidly identify high-polluting vehicles as they travel on the road. The method is able to monitor emissions from a large number of vehicles in a short time and avoids the need to conduct expensive and time consuming tests on chassis dynamometers. A sample of the exhaust plume is captured as each vehicle passes a roadside monitoring station and the pollutant emission factors are calculated from the measured concentrations using carbon dioxide as a tracer. Although, similar methods have been used to monitor soot and gaseous mass emissions, to-date it has not been used to monitor particle number emissions from a large fleet of vehicles. This is particularly important as epidemiological studies have shown that particle number concentration is an important parameter in determining adverse health effects. The method was applied to measurements of particle number emissions from individual buses in the Brisbane City Council diesel fleet operating on the South-East Busway. Results indicate that the particle number emission factors are gamma- distributed, with a high proportion of the emissions being emitted by a small percentage of the buses. Although most of the high-emitters are the oldest buses in the fleet, there are clear exceptions, with some newer buses emitting as much. We attribute this to their recent service history, particularly pertaining to improper tuning of the engines. We recommend that a targeted correction program would be a highly effective measure in mitigating urban environmental pollution.
Resumo:
We report on charge transport and density of trap states (trap DOS) in ambipolar diketopyrrolopyrrole-benzothiadiazole copolymer thin-film transistors. This semiconductor possesses high electron and hole field-effect mobilities of up to 0.6 cm 2/V-s. Temperature and gate-bias dependent field-effect mobility measurements are employed to extract the activation energies and trap DOS to understand its unique high mobility balanced ambipolar charge transport properties. The symmetry between the electron and hole transport characteristics, parameters and activation energies is remarkable. We believe that our work is the first charge transport study of an ambipolar organic/polymer based field-effect transistor with room temperature mobility higher than 0.1 cm 2/V-s in both electrons and holes.
Resumo:
In this paper, we report on the device physics and charge transport characteristics of high-mobility dual-gated polymer thin-film transistors with active semiconductor layers consisting of thiophene flanked DPP with thienylene-vinylene-thienylene (PDPP-TVT) alternating copolymers. Room temperature mobilities in these devices are high and can exceed 2 cm2 V-1 s-1. Steady-state and non-quasi-static measurements have been performed to extract key transport parameters and velocity distributions of charge carriers in this copolymer. Charge transport in this polymer semiconductor can be explained using a Multiple-Trap-and-Release or Monroe-type model. We also compare the activation energy vs. field-effect mobility in a few important polymer semiconductors to gain a better understanding of transport of DPP systems and make appropriate comparisons.
Resumo:
Computational fluid dynamics, analytical solutions, and mathematical modelling approaches are used to gain insights into the distribution of fumigant gas within farm-scale, grain storage silos. Both fan-forced and tablet fumigation are considered in this work, which develops new models for use by researchers, primary producers and silo manufacturers to assist in the eradication grain storage pests.
Resumo:
Significant lifestyle and demographic changes in Queensland are beginning to alter the landscape of regional transport planning. In 2006, Queensland Transport undertook a study to understand the implications of these changes on the transport planning task in regional Queensland. The study focused on the current travel characteristics of three Local Government Areas in the Wide Bay Burnett Region. Hervey Bay City represented the ‘sea change’ phenomenon; Wondai Shire represented the growing ‘tree change’ lifestyle; and Monto Shire represented communities which were either experiencing limited change or a decrease in population. The results of this research will be used to inform long term integrated regional transport planning in the region.
Resumo:
Bacteria have mechanisms to export proteins for diverse purposes, including colonization of hosts and pathogenesis. A small number of archetypal bacterial secretion machines have been found in several groups of bacteria and mediate a fundamentally distinct secretion process. Perhaps erroneously, proteins called 'autotransporters' have long been thought to be one of these protein secretion systems. Mounting evidence suggests that autotransporters might be substrates to be secreted, not an autonomous transporter system. We have discovered a new translocation and assembly module (TAM) that promotes efficient secretion of autotransporters in proteobacteria. Functional analysis of the TAM in Citrobacter rodentium, Salmonella enterica and Escherichia coli showed that it consists of an Omp85-family protein, TamA, in the outer membrane and TamB in the inner membrane of diverse bacterial species. The discovery of the TAM provides a new target for the development of therapies to inhibit colonization by bacterial pathogens.
Resumo:
This study examines the association between urban form and walking for transport in Brisbane, Australia based on both panel and cross-sectional data. Cross-sectional data are used to determine whether urban form was associated with walking for transport in 2011. Panel data are used to evaluate whether changes in the built environment altered walking behaviour between 2009 and 2011. Results from the cross-sectional data suggest that individuals are significantly more likely to be walkers if they live in an area with a well-connected street network and an accessible train station. The longitudinal analysis confirms these relationships; there also was however, a significant impact of travel attitudes and perceptions on walking behaviour. The findings suggest that the built environment continues to be an important factor to encourage walking; however, interventions are also required to change social norms in order to increase the receptiveness for and participation in walking.
Resumo:
Housing affordability and sustainable development are not polarised ideologies as both are necessary with increasing urbanisation. We must bridge the gap between current median house pricing and target affordable house pricing whilst pursuing sustainability. This paper examines the potential of initial construction cost and ongoing utilities and transport cost reduction through the integration of sustainable housing design and transit oriented development principles in a Commuter Energy and Building Utilities System (CEBUS). It also introduces current research on the development of a Dynamic Simulation Model for CEBUS applications in the Australian property development and construction industry.