227 resultados para Artificial intelligence|Computer science
Resumo:
Reliable robotic perception and planning are critical to performing autonomous actions in uncertain, unstructured environments. In field robotic systems, automation is achieved by interpreting exteroceptive sensor information to infer something about the world. This is then mapped to provide a consistent spatial context, so that actions can be planned around the predicted future interaction of the robot and the world. The whole system is as reliable as the weakest link in this chain. In this paper, the term mapping is used broadly to describe the transformation of range-based exteroceptive sensor data (such as LIDAR or stereo vision) to a fixed navigation frame, so that it can be used to form an internal representation of the environment. The coordinate transformation from the sensor frame to the navigation frame is analyzed to produce a spatial error model that captures the dominant geometric and temporal sources of mapping error. This allows the mapping accuracy to be calculated at run time. A generic extrinsic calibration method for exteroceptive range-based sensors is then presented to determine the sensor location and orientation. This allows systematic errors in individual sensors to be minimized, and when multiple sensors are used, it minimizes the systematic contradiction between them to enable reliable multisensor data fusion. The mathematical derivations at the core of this model are not particularly novel or complicated, but the rigorous analysis and application to field robotics seems to be largely absent from the literature to date. The techniques in this paper are simple to implement, and they offer a significant improvement to the accuracy, precision, and integrity of mapped information. Consequently, they should be employed whenever maps are formed from range-based exteroceptive sensor data. © 2009 Wiley Periodicals, Inc.
Resumo:
In this paper we present large, accurately calibrated and time-synchronized data sets, gathered outdoors in controlled and variable environmental conditions, using an unmanned ground vehicle (UGV), equipped with a wide variety of sensors. These include four 2D laser scanners, a radar scanner, a color camera and an infrared camera. It provides a full description of the system used for data collection and the types of environments and conditions in which these data sets have been gathered, which include the presence of airborne dust, smoke and rain.
Resumo:
This work aims to promote integrity in autonomous perceptual systems, with a focus on outdoor unmanned ground vehicles equipped with a camera and a 2D laser range finder. A method to check for inconsistencies between the data provided by these two heterogeneous sensors is proposed and discussed. First, uncertainties in the estimated transformation between the laser and camera frames are evaluated and propagated up to the projection of the laser points onto the image. Then, for each pair of laser scan-camera image acquired, the information at corners of the laser scan is compared with the content of the image, resulting in a likelihood of correspondence. The result of this process is then used to validate segments of the laser scan that are found to be consistent with the image, while inconsistent segments are rejected. Experimental results illustrate how this technique can improve the reliability of perception in challenging environmental conditions, such as in the presence of airborne dust.
Resumo:
This work aims to promote reliability and integrity in autonomous perceptual systems, with a focus on outdoor unmanned ground vehicle (UGV) autonomy. For this purpose, a comprehensive UGV system, comprising many different exteroceptive and proprioceptive sensors has been built. The first contribution of this work is a large, accurately calibrated and synchronised, multi-modal data-set, gathered in controlled environmental conditions, including the presence of dust, smoke and rain. The data have then been used to analyse the effects of such challenging conditions on perception and to identify common perceptual failures. The second contribution is a presentation of methods for mitigating these failures to promote perceptual integrity in adverse environmental conditions.
Resumo:
This paper presents an approach to autonomously monitor the behavior of a robot endowed with several navigation and locomotion modes, adapted to the terrain to traverse. The mode selection process is done in two steps: the best suited mode is firstly selected on the basis of initial information or a qualitative map built on-line by the robot. Then, the motions of the robot are monitored by various processes that update mode transition probabilities in a Markov system. The paper focuses on this latter selection process: the overall approach is depicted, and preliminary experimental results are presented
Resumo:
This article presents an approach to improve and monitor the behavior of a skid-steering rover on rough terrains. An adaptive locomotion control generates speeds references to avoid slipping situations. An enhanced odometry provides a better estimation of the distance travelled. A probabilistic classification procedure provides an evaluation of the locomotion efficiency on-line, with a detection of locomotion faults. Results obtained with a Marsokhod rover are presented throughout the paper
Resumo:
Energy auditing is an effective but costly approach for reducing the long-term energy consumption of buildings. When well-executed, energy loss can be quickly identified in the building structure and its subsystems. This then presents opportunities for improving energy efficiency. We present a low-cost, portable technology called "HeatWave" which allows non-experts to generate detailed 3D surface temperature models for energy auditing. This handheld 3D thermography system consists of two commercially available imaging sensors and a set of software algorithms which can be run on a laptop. The 3D model can be visualized in real-time by the operator so that they can monitor their degree of coverage as the sensors are used to capture data. In addition, results can be analyzed offline using the proposed "Spectra" multispectral visualization toolbox. The presence of surface temperature data in the generated 3D model enables the operator to easily identify and measure thermal irregularities such as thermal bridges, insulation leaks, moisture build-up and HVAC faults. Moreover, 3D models generated from subsequent audits of the same environment can be automatically compared to detect temporal changes in conditions and energy use over time.
Resumo:
Object classification is plagued by the issue of session variation. Session variation describes any variation that makes one instance of an object look different to another, for instance due to pose or illumination variation. Recent work in the challenging task of face verification has shown that session variability modelling provides a mechanism to overcome some of these limitations. However, for computer vision purposes, it has only been applied in the limited setting of face verification. In this paper we propose a local region based intersession variability (ISV) modelling approach, and apply it to challenging real-world data. We propose a region based session variability modelling approach so that local session variations can be modelled, termed Local ISV. We then demonstrate the efficacy of this technique on a challenging real-world fish image database which includes images taken underwater, providing significant real-world session variations. This Local ISV approach provides a relative performance improvement of, on average, 23% on the challenging MOBIO, Multi-PIE and SCface face databases. It also provides a relative performance improvement of 35% on our challenging fish image dataset.
Resumo:
Genomic sequences are fundamentally text documents, admitting various representations according to need and tokenization. Gene expression depends crucially on binding of enzymes to the DNA sequence at small, poorly conserved binding sites, limiting the utility of standard pattern search. However, one may exploit the regular syntactic structure of the enzyme's component proteins and the corresponding binding sites, framing the problem as one of detecting grammatically correct genomic phrases. In this paper we propose new kernels based on weighted tree structures, traversing the paths within them to capture the features which underpin the task. Experimentally, we and that these kernels provide performance comparable with state of the art approaches for this problem, while offering significant computational advantages over earlier methods. The methods proposed may be applied to a broad range of sequence or tree-structured data in molecular biology and other domains.
Resumo:
Detecting anomalies in the online social network is a significant task as it assists in revealing the useful and interesting information about the user behavior on the network. This paper proposes a rule-based hybrid method using graph theory, Fuzzy clustering and Fuzzy rules for modeling user relationships inherent in online-social-network and for identifying anomalies. Fuzzy C-Means clustering is used to cluster the data and Fuzzy inference engine is used to generate rules based on the cluster behavior. The proposed method is able to achieve improved accuracy for identifying anomalies in comparison to existing methods.
Resumo:
We present a novel approach for multi-object detection in aerial videos based on tracking. The proposed method mainly involves three steps. Firstly, the spatial-temporal saliency is employed to detect moving objects. Secondly, the detected objects are tracked by mean shift in the subsequent frames. Finally, the saliency results are fused with the weight map generated by tracking to get refined detection results, and in turn the modified detection results are used to update the tracking models. The proposed algorithm is evaluated on VIVID aerial videos, and the results show that our approach can reliably detect moving objects even in challenging situations. Meanwhile, the proposed method can process videos in real time, without the effect of time delay.
Resumo:
In this paper, the problem of moving object detection in aerial video is addressed. While motion cues have been extensively exploited in the literature, how to use spatial information is still an open problem. To deal with this issue, we propose a novel hierarchical moving target detection method based on spatiotemporal saliency. Temporal saliency is used to get a coarse segmentation, and spatial saliency is extracted to obtain the object’s appearance details in candidate motion regions. Finally, by combining temporal and spatial saliency information, we can get refined detection results. Additionally, in order to give a full description of the object distribution, spatial saliency is detected in both pixel and region levels based on local contrast. Experiments conducted on the VIVID dataset show that the proposed method is efficient and accurate.
Resumo:
Although recommender systems and reputation systems have quite different theoretical and technical bases, both types of systems have the purpose of providing advice for decision making in e-commerce and online service environments. The similarity in purpose makes it natural to integrate both types of systems in order to produce better online advice, but their difference in theory and implementation makes the integration challenging. In this paper, we propose to use mappings to subjective opinions from values produced by recommender systems as well as from scores produced by reputation systems, and to combine the resulting opinions within the framework of subjective logic.
Resumo:
Objective Evaluate the effectiveness and robustness of Anonym, a tool for de-identifying free-text health records based on conditional random fields classifiers informed by linguistic and lexical features, as well as features extracted by pattern matching techniques. De-identification of personal health information in electronic health records is essential for the sharing and secondary usage of clinical data. De-identification tools that adapt to different sources of clinical data are attractive as they would require minimal intervention to guarantee high effectiveness. Methods and Materials The effectiveness and robustness of Anonym are evaluated across multiple datasets, including the widely adopted Integrating Biology and the Bedside (i2b2) dataset, used for evaluation in a de-identification challenge. The datasets used here vary in type of health records, source of data, and their quality, with one of the datasets containing optical character recognition errors. Results Anonym identifies and removes up to 96.6% of personal health identifiers (recall) with a precision of up to 98.2% on the i2b2 dataset, outperforming the best system proposed in the i2b2 challenge. The effectiveness of Anonym across datasets is found to depend on the amount of information available for training. Conclusion Findings show that Anonym compares to the best approach from the 2006 i2b2 shared task. It is easy to retrain Anonym with new datasets; if retrained, the system is robust to variations of training size, data type and quality in presence of sufficient training data.
Resumo:
In this research, we introduce a new blind steganalysis in detecting grayscale JPEG images. Features-pooling method is employed to extract the steganalytic features and the classification is done by using neural network. Three different steganographic models are tested and classification results are compared to the five state-of-the-art blind steganalysis.