235 resultados para Application of Criminal Law principles by Brazilian judiciary
Resumo:
This paper documents the use of bibliometrics as a methodology to bring forth a structured, systematic and rigorous way to analyse and evaluate a range of literature. When starting out and reading broadly for my doctoral studies, one article by Trigwell and Prosser (1996b) led me to reflect about my level of comprehension as the content, concepts and methodology did not resonate with my epistemology. A disconnection between our paradigms emerged. Further reading unveiled the work by Doyle (1987) who categorised research in teaching and teacher education by three main areas: teacher characteristics, methods research and teacher behaviour. My growing concerns that there were gaps in the knowledge also exposed the difficulties in documenting said gaps. As an early researcher who required support to locate myself in the field and to find my research voice, I identified bibliometrics (Budd, 1988; Yeoh & Kaur, 2007) as an appropriate methodology to add value and rigour in three ways. Firstly, the application of bibliometrics to analyse articles is systematic, builds a picture from the characteristics of the literature, and offers a way to elicit themes within the categories. Secondly, by systematic analysis there is occasion to identify gaps within the body of work, limitations in methodology or areas in need of further research. Finally, extension and adaptation of the bibliometrics methodology, beyond citation or content analysis, to investigate the merit of methodology, participants and instruments as a determinant for research worth allowed the researcher to build confidence and contribute new knowledge to the field. Therefore, this paper frames research in the pedagogic field of Higher Education through teacher characteristics, methods research and teacher behaviour, visually represents the literature analysis and locates my research self within methods research. Through my research voice I will present the bibliometrics methodology, the outcomes and document the landscape of pedagogy in the field of Higher Education.
Resumo:
Nano silicon is widely used as the essential element of complementary metal–oxide–semiconductor (CMOS) and solar cells. It is recognized that today, large portion of world economy is built on electronics products and related services. Due to the accessible fossil fuel running out quickly, there are increasing numbers of researches on the nano silicon solar cells. The further improvement of higher performance nano silicon components requires characterizing the material properties of nano silicon. Specially, when the manufacturing process scales down to the nano level, the advanced components become more and more sensitive to the various defects induced by the manufacturing process. It is known that defects in mono-crystalline silicon have significant influence on its properties under nanoindentation. However, the cost involved in the practical nanoindentation as well as the complexity of preparing the specimen with controlled defects slow down the further research on mechanical characterization of defected silicon by experiment. Therefore, in current study, the molecular dynamics (MD) simulations are employed to investigate the mono-crystalline silicon properties with different pre-existing defects, especially cavities, under nanoindentation. Parametric studies including specimen size and loading rate, are firstly conducted to optimize computational efficiency. The optimized testing parameters are utilized for all simulation in defects study. Based on the validated model, different pre-existing defects are introduced to the silicon substrate, and then a group of nanoindentation simulations of these defected substrates are carried out. The simulation results are carefully investigated and compared with the perfect Silicon substrate which used as benchmark. It is found that pre-existing cavities in the silicon substrate obviously influence the mechanical properties. Furthermore, pre-existing cavities can absorb part of the strain energy during loading, and then release during unloading, which possibly causes less plastic deformation to the substrate. However, when the pre-existing cavities is close enough to the deformation zone or big enough to exceed the bearable stress of the crystal structure around the spherical cavity, the larger plastic deformation occurs which leads the collapse of the structure. Meanwhile, the influence exerted on the mechanical properties of silicon substrate depends on the location and size of the cavity. Substrate with larger cavity size or closer cavity position to the top surface, usually exhibits larger reduction on Young’s modulus and hardness.
Resumo:
• The Queensland context • Rationale and aims • Method • Demographics and basic data • Avoidance of driving and walking situations • Success of intended avoidance • Further analyses (preliminary results) • Implications
Resumo:
One of the next great challenges of cell biology is the determination of the enormous number of protein structures encoded in genomes. In recent years, advances in electron cryo-microscopy and high-resolution single particle analysis have developed to the point where they now provide a methodology for high resolution structure determination. Using this approach, images of randomly oriented single particles are aligned computationally to reconstruct 3-D structures of proteins and even whole viruses. One of the limiting factors in obtaining high-resolution reconstructions is obtaining a large enough representative dataset ($>100,000$ particles). Traditionally particles have been manually picked which is an extremely labour intensive process. The problem is made especially difficult by the low signal-to-noise ratio of the images. This paper describes the development of automatic particle picking software, which has been tested with both negatively stained and cryo-electron micrographs. This algorithm has been shown to be capable of selecting most of the particles, with few false positives. Further work will involve extending the software to detect differently shaped and oriented particles.
Resumo:
Virtual Reality (VR) techniques are increasingly being used in education about and in the treatment of certain types of mental illness. Research indicates VR is delivering on it's promised potential to provide enhanced training and treatment outcomes through incorporation of this high-end technology. Schizophrenia is a mental disorder affecting 1−2% of the population. A significant research project being undertaken at the University of Queensland has constructed virtual environments that reproduce the phenomena experienced by patients who have psychosis. The VR environment will allow behavioral exposure therapies to be conducted with exactly controlled exposure stimuli and an expected reduction in risk of harm. This paper reports on the work of the project, previous stages of software development and current and future educational and clinical applications of the Virtual Environments.
Resumo:
Social harmony can manifest in many ways. In rapidly motorizing countries like China, a growing area of potential disharmony is road use. The increased ability to purchase a car for the first time and a subsequent increase in new drivers has seen several Chinese cities take unprecedented measures to manage congestion. There is a corresponding need to ensure effective traffic law enforcement in promoting a safe environment for all road users. This paper reports qualitative research conducted with Beijing car drivers to investigate perceptions of unsafe road use, penalties for traffic violations, and improvements for the current system. Overall, the findings suggest awareness among drivers of many of the key risk factors. A perceived lack of clarity in how penalties are determined was identified and drivers in-dicated a desire to know how revenue from traffic fines is used. Several suggestions for improving the current system included school/community education about road risks and traffic law. The rise of private car ownership in China may contribute to a more harmonious personal life, but at the same time, may contribute to a decrease in societal harmony. A major challenge for authorities in any country is to promote the idea of a collective responsibility for road safety (traffic harmony), especially to those who perceive that traffic rules do not apply to them. This is a potentially greater challenge for China as it strives to balance harmony on the road and harmony in the broader society.
Resumo:
This paper presents an approach to developing indicators for expressing resilience of a generic water supply system. The system is contextualised as a meta-system consisting of three subsystems to represent the water catchment and reservoir, treatment plant and the distribution system supplying the end-users. The level of final service delivery to end-users is considered as a surrogate measure of systemic resilience. A set of modelled relationships are used to explore relationships between system components when placed under simulated stress. Conceptual system behaviour of specific types of simulated pressure is created for illustration of parameters for indicator development. The approach is based on the hypothesis that an in-depth knowledge of resilience would enable development of decision support system capability which in turn will contribute towards enhanced management of a water supply system. In contrast to conventional water supply system management approaches, a resilience approach facilitates improvement in system efficiency by emphasising awareness of points-of-intervention where system managers can adjust operational control measures across the meta-system (and within subsystems) rather than expansion of the system in entirety in the form of new infrastructure development.
Resumo:
This article will outline the impact of the Electronic Conveyancing National Law (ECNL) and the draft Model Participation Rules (MPR) on conveyancing practice and the obligations of lawyers and conveyancers.
Resumo:
Flood related scientific and community-based data are rarely systematically collected and analysed in the Philippines. Over the last decades the Pagsangaan River Basin, Leyte, has experienced several flood events. However, documentation describing flood characteristics such as extent, duration or height of these floods are close to non-existing. To address this issue, computerized flood modelling was used to reproduce past events where there was data available for at least partial calibration and validation. The model was also used to provide scenario-based predictions based on A1B climate change assumptions for the area. The most important input for flood modelling is a Digital Elevation Model (DEM) of the river basin. No accurate topographic maps or Light Detection And Ranging (LIDAR)-generated data are available for the Pagsangaan River. Therefore, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Map (GDEM), Version 1, was chosen as the DEM. Although the horizontal spatial resolution of 30 m is rather desirable, it contains substantial vertical errors. These were identified, different correction methods were tested and the resulting DEM was used for flood modelling. The above mentioned data were combined with cross-sections at various strategic locations of the river network, meteorological records, river water level, and current velocity to develop the 1D-2D flood model. SOBEK was used as modelling software to create different rainfall scenarios, including historic flooding events. Due to the lack of scientific data for the verification of the model quality, interviews with local stakeholders served as the gauge to judge the quality of the generated flood maps. According to interviewees, the model reflects reality more accurately than previously available flood maps. The resulting flood maps are now used by the operations centre of a local flood early warning system for warnings and evacuation alerts. Furthermore these maps can serve as a basis to identify flood hazard areas for spatial land use planning purposes.
Resumo:
Self-efficacy has two cognitive components, efficacy expectations and outcome expectations, and their influence on behavior change is synergistic. Efficacy expectation is effected by four main sources of information provided by direct and indirect experiences. The four sources of information are performance accomplishments, vicarious experience, verbal persuasion and self-appraisal. How to measure and develop interventions is an important issue at present. This article clearly analyzes the relationship between variables of the self-efficacy model and explains the implementation of self-efficacy enhancing interventions and instruments in order to test the model. Through the process of the use of theory and feasibility in clinical practice, it is expected that professional medical care personnel should firstly familiarize themselves with the self-efficiency model and concept, and then flexibly promote it in professional fields clinical practice, chronic disease care and health promotion.
Resumo:
In recent years, organoclays have become widely used in many industrial applications, and particularly they have been applied as adsorbents for water purification (de Paiva et al., 2008; Zhou et al., 2008; Park et al., 2011). When the organoclays are enhanced by intercalation of cationic surfactant molecules, the surface properties are altered from hydrophilic to highly hydrophobic. These changes facilitate their industrial applications which are strongly dependent on the structural properties of organoclays (Koh and Dixon, 2001; Zeng et al., 2004; Cui et al., 2007). Thus a better understanding of the configuration and structural change in the organoclays by thermogravimetric analysis (TG) is essential. It has been proven that the TG is very useful for the study of complex minerals, modified minerals, and nanomaterials (Laachachi et al., 2005; Palmer et al., 2011; Park et al., in press, 2011). Therefore, the current investigation involves the thermal stability of a montmorillonite intercalated with two types of cationic surfactants: dodecyltrimethylammonium bromide (DDTMA) and didodecyldimethylammonium bromide (DDDMA) using TG. The modification of montmorillonite results in an increase in the interlayer or basal spacing and enhances the environmental and industrial application of the obtained organoclay.
Resumo:
Basing on the character that Fiber Bragg Grating (FBG) is sensitive to both temperature and strain, by using Al and Fe-Ni alloy’s bimetal structure, we successfully design and manufacture a high accuracy FBG temperature sensor for earthquake premonition. Furthermore, we analyze the accuracy of the FBG sensors with enhanced sensitivity for the first time, and get its accuracy is up to ±0.05℃ with highest resolution ever in all FBG temperature sensors (0.0014℃/pm). This work experimentally proves the feasibility of using FBG in the earthquake premonition monitoring, and builds the foundation for the application of optic technology in earthquake premonition monitoring.
Resumo:
The biosafety of carbon nanomaterial needs to be critically evaluated with both experimental and theoretical validations before extensive biomedical applications. In this letter, we present an analysis of the binding ability of two dimensional monolayer carbon nanomaterial on actin by molecular simulation to understand their adhesive characteristics on F-actin cytoskeleton. The modelling results indicate that the positively charged carbon nanomaterial has higher binding stability on actin. Compared to crystalline graphene, graphene oxide shows higher binding influence on actin when carrying 11 positive surface charge. This theoretical investigation provides insights into the sensitivity of actin-related cellular activities on carbon nanomaterial.
Resumo:
Modified montmorillonite was prepared at different surfactant (HDTMA) loadings through ion exchange. The conformational arrangement of the loaded surfactants within the interlayer space of MMT was obtained by computational modelling. The conformational change of surfactant molecules enhance the visual understanding of the results obtained from characterization methods such as XRD and surface analysis of the organoclays. Batch experiments were carried out for the adsorption of p-chlorophenol (PCP) and different conditions (pH and temperature) were used in order to determine the optimum sorption. For comparison purpose, the experiments were repeated under the same conditions for p-nitrophenol (PNP). Langmuir and Freundlich equations were applied to the adsorption isotherm of PCP and PNP. The Freundlich isotherm model was found to be the best fit for both of the phenolic compounds. This involved multilayer adsorptions in the adsorption process. In particular, the binding affinity value of PNP was higher than that of PCP and this is attributable to their hydrophobicities. The adsorption of the phenolic compounds by organoclays intercalated with highly loaded surfactants was markedly improved possibly due to the fact that the intercalated surfactant molecules within the interlayer space contribute to the partition phases, which result in greater adsorption of the organic pollutants.