185 resultados para Anthropological Exhibits
Resumo:
Masonry bond is affected by many parameters such as the type of mortar used, the techniques of dispersion of mortar and the surface texture of the concrete blocks. Additionally it is understood from the studies on conventional masonry that the bond characteristics are also influenced by the curing methods as well as the age of the bond at the time of testing. These effects on thin layer mortared masonry employing polymer cement mortars are not well understood. Therefore, the effect of curing methods and age to the bond strength and deformation of masonry containing thin layered polymer cement mortar was investigated as part of an ongoing research program at the Queensland University of Technology. This paper presents an experimental investigation of the flexural and shear bond characteristics of the thin layer mortared concrete masonry. The parameters examined include the effects curing and ageing to the bond development over a period from 14 days to 56 days after fabrication. The results exhibit that dry cured thin layer mortared masonry exhibits higher bond strength and Young’s and shear moduli compared to the wet cured specimens.
Resumo:
Wind energy, being the fastest growing renewable energy source in the present world, requires a large number of wind turbines to transform wind energy into electricity. One factor driving the cost of this energy is the reliable operation of these turbines. Therefore, it is a growing requirement within the wind farm community, to monitor the operation of the wind turbines on a continuous basis so that a possible fault can be detected ahead of time. As the wind turbine operates in an environment of constantly changing wind speed, it is a challenging task to design a fault detection technique which can accommodate the stochastic operational behavior of the turbines. Addressing this issue, this paper proposes a novel fault detection criterion which is robust against operational uncertainty, as well as having the ability to quantify severity level specifically of the drivetrain abnormality within an operating wind turbine. A benchmark model of wind turbine has been utilized to simulate drivetrain fault condition and effectiveness of the proposed technique has been tested accordingly. From the simulation result it can be concluded that the proposed criterion exhibits consistent performance for drivetrain faults for varying wind speed and has linear relationship with the fault severity level.
Resumo:
The laz gene of Neisseria meningitidis is predicted to encode a lipid-modified azurin (Laz). Laz is very similar to azurin, a periplasmic protein, which belongs to the copper-containing proteins in the cupredoxin superfamily. In other bacteria, azurin is an electron donor to nitrite reductase, an important enzyme in the denitrifying process. It is not known whether Laz could function as an electron transfer protein in this important pathogen. Laz protein was heterologously expressed in Escherichia coli and purified. Electrospray mass spectrometry indicated that the Laz protein contains one copper ion. Laz was shown to be redox-active in the presence of its redox center copper ion. When oxidized, Laz exhibits an intense blue colour and absorbs visible light around 626 nm. The absorption is lost when exposed to diethyldithiocarbamate, a copper chelating agent. Polyclonal antibodies were raised against purified Laz for detecting expression of Laz under different growth conditions and to determine the orientation of Laz on the outer membrane. The expression of Laz under microaerobic and microaerobic denitrifying conditions was slightly higher than that under aerobic conditions. However, the expression of Laz was similar between the wild type strain and an fnr mutant, suggesting that Fumarate/Nitrate reduction regulator (FNR) does not regulate the expression of Laz despite the presence of a partial FNR box upstream of the laz gene. We propose that some Laz protein is exposed on the outer membrane surface of N. meningitidis as the αLaz antibodies can increase killing by complement in a capsule deficient N. meningitidis strain, in a dose-dependent fashion.
Resumo:
This chapter is focussed on the research and development of an intelligent driver warning system (IDWS) as a means to improve road safety and driving comfort. Two independent IDWS case studies are presented. The first study examines the methodology and implementation for attentive visual tracking and trajectory estimation for dynamic scene segmentation problems. In the second case study, the concept of driver modelling is evaluated which can be used to provide useful feedback to drivers. In both case studies, the quality of IDWS is largely determined by the modelling capability for estimating multiple vehicle trajectories and modelling driving behaviour. A class of modelling techniques based on neural-fuzzy systems, which exhibits provable learning and modelling capability, is proposed. For complex modelling problems where the curse of dimensionality becomes an issue, a network construction algorithm based on Adaptive Spline Modelling of Observation Data (ASMOD) is also proposed.
Resumo:
Here we demonstrate that commercial carbon supported Pt nanoparticles react with [AuCl4]- ions at room temperature to produce a highly active Au/Pt/C material with an ultralow coverage of elemental Au on the Pt nanoparticles that exhibits significantly enhanced activity for ethanol oxidation when compared to Pt/C.
Resumo:
This thesis explores The Virtues Project's ontological, educational and cross-cultural dimensions taking Charles Taylor's philosophical perspective of an anthropological account of the self and a phenomenological account of moral life and engagement. The experience of Mongolian schoolteachers implementing this moral education program is analyzed using a narrative inquiry method. The globally attractive project appears in moral education and virtues ethics research and surveys, yet no critical evaluation has been undertaken. Its conceptual features are appraised from a Taylorean perspective. The Listening Guide analysis of teacher experiences is presented in two narratives. The first is about the teachers' implementation experiences of moral flourishing as selves, in relationships and in community. The second is about their experience of becoming Mongolian in their modern day context. In conclusion, the project is coherent, constructive and potentially suitable cross-culturally.
Resumo:
Safety culture is a term with numerous definitions in the literature. Many authors advocate a prescriptive approach to safety culture in which if an organisation has certain levels of externally prescribed systems and structures in place it has a “good safety culture”. Conversely, other researchers suggest an anthropological approach of exploring deep meanings and understandings present within an organisation’s workforce. In a recent published review, the authors presented an alternative view to safety culture, in which the anthropological aspects of safety culture interact with the structures and systems in place within an organisation to result in behavioural patterns. This can be viewed as a human factors approach to safety culture in which, through understanding the specific interactions between the culture of a workforce and external organisational elements, organisational structures and systems can be optimised in order to shape worker behaviour and improve safety. This paper presents findings from a recent investigation of safety culture in the Australian heavy vehicle (transport) industry. Selected results are discussed to explore how understanding culture can provide direction to the optimisation of organisational structures and systems to match worker culture and thus improve safety. Specifically the value placed on personal experience and stories, as well as on both time and money are discussed, and interventions that are suited to these aspects of the culture are discussed. These findings demonstrate the importance of shifting beyond mere prescriptive and interpretive approaches to safety culture and instead to focus on the interaction between cultural and contextual elements to optimise organisational structures and systems.
Resumo:
When settling, people often use cultural schema from their original homeland to build familiarity in unfamiliar surrounds. This paper draws on ethnographic fieldwork conducted by the first author in Brisbane, with the Karen community from Burma, during which participant observation and interview methods were used. We present an ethnographic account of the Brisbane Karen wrist-tying ceremony. The ceremony acts as an insight into the challenges for Karen whilst settling into Australia. It reflects multiple accounts of history and tradition, but simultaneously speaks to emerging, contemporary Karen contexts. This research contributes to richer understandings of settlement: it frames transnational cultural practice as a flexible mode of integration, rather than an exclusionary mode of othering. We propose that the integrative discourse of the ceremony creates familiarity and social connection in local and diasporic spaces. This acts as a counter to the challenges of Karen settlement including the negotiations of local/global identity politics.
Resumo:
Flexible memory cell array based on high mobility donor-acceptor diketopyrrolopyrrole polymer has been demonstrated. The memory cell exhibits low read voltage, high cell-to-cell uniformity and good mechanical flexibility, and has reliable retention and endurance memory performance. The electrical properties of the memory devices are systematically investigated and modeled. Our results suggest that the polymer blends provide an important step towards high-density flexible nonvolatile memory devices.
Resumo:
Diketopyrrolopyrole-naphthalene polymer (PDPP-TNT), a donor-acceptor co-polymer, has shown versatile behavior demonstrating high performances in organic field-effect transistors (OFETs) and organic photovoltaic (OPV) devices. In this paper we report investigation of charge carrier dynamics in PDPP-TNT, and [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) bulk-heterojunction based inverted OPV devices using current density-voltage (J-V) characteristics, space charge limited current (SCLC) measurements, capacitance-voltage (C-V) characteristics, and impedance spectroscopy (IS). OPV devices in inverted architecture, ITO/ZnO/PDPP-TNT:PC71BM/MoO3/Ag, are processed and characterized at room conditions. The power conversion efficiency (PCE) of these devices are measured ∼3.8%, with reasonably good fill-factor 54.6%. The analysis of impedance spectra exhibits electron’s mobility ∼2 × 10−3 cm2V−1s−1, and lifetime in the range of 0.03-0.23 ms. SCLC measurements give hole mobility of 1.12 × 10−5 cm2V−1s−1, and electron mobility of 8.7 × 10−4 cm2V−1s−1.
Resumo:
Traffic congestion has been a growing issue in many metropolitan areas during recent years, which necessitates the identification of its key contributors and development of sustainable strategies to help decrease its adverse impacts on traffic networks. Road incidents generally and crashes specifically have been acknowledged as the cause of a large proportion of travel delays in urban areas and account for 25% to 60% of traffic congestion on motorways. Identifying the critical determinants of travel delays has been of significant importance to the incident management systems which constantly collect and store the incident duration data. This study investigates the individual and simultaneous differential effects of the relevant determinants on motorway crash duration probabilities. In particular, it applies parametric Accelerated Failure Time (AFT) hazard-based models to develop in-depth insights into how the crash-specific characteristic and the associated temporal and infrastructural determinants impact the duration. AFT models with both fixed and random parameters have been calibrated on one year of traffic crash records from two major Australian motorways in South East Queensland and the differential effects of determinants on crash survival functions have been studied on these two motorways individually. A comprehensive spectrum of commonly used parametric fixed parameter AFT models, including generalized gamma and generalized F families, have been compared to random parameter AFT structures in terms of goodness of fit to the duration data and as a result, the random parameter Weibull AFT model has been selected as the most appropriate model. Significant determinants of motorway crash duration included traffic diversion requirement, crash injury type, number and type of vehicles involved in a crash, day of week and time of day, towing support requirement and damage to the infrastructure. A major finding of this research is that the motorways under study are significantly different in terms of crash durations; such that motorway exhibits durations that are on average 19% shorter compared to the durations on motorway. The differential effects of explanatory variables on crash durations are also different on the two motorways. The detailed presented analysis confirms that, looking at the motorway network as a whole, neglecting the individual differences between roads, can lead to erroneous interpretations of duration and inefficient strategies for mitigating travel delays along a particular motorway.
Resumo:
The self-assembly of layered molybdenum disulfide–graphene (MoS2–Gr) and horseradish peroxidase (HRP) by electrostatic attraction into a novel hybrid nanomaterial (HRP–MoS2–Gr) is reported. The properties of the MoS2–Gr were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (TEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). UV–vis and Fourier transform infrared spectroscopy (FT-IR) indicate that the native structure of the HRP is maintained after the assembly, implying good biocompatibility of MoS2–Gr nanocomposite. Furthermore, the HRP–MoS2–Gr composite is utilized as a biosensor, which displays electrocatalytic activity to hydrogen peroxide (H2O2) with high sensitivity (679.7 μA mM−1 cm−2), wide linear range (0.2 μM–1.103 mM), low detection limit (0.049 μM), and fast amperometric response. In addition, the biosensor also exhibits strong anti-interference ability, satisfactory stability and reproducibility. These desirable electrochemical properties are attributed to the good biocompatibility and electron transport efficiency of the MoS2–Gr composite, as well as the high loading of HRP. Therefore, this biosensor is potentially suitable for H2O2 analysis in environmental, pharmaceutical, food or industrial applications.
Resumo:
Purpose The purpose of this investigation was to assess the angular dependence of a commercial optically stimulated luminescence dosimeter (OSLD) dosimetry system in MV x-ray beams at depths beyondd max and to find ways to mitigate this dependence for measurements in phantoms. Methods Two special holders were designed which allow a dosimeter to be rotated around the center of its sensitive volume. The dosimeter's sensitive volume is a disk, 5 mm in diameter and 0.2 mm thick. The first holder rotates the disk in the traditional way. It positions the disk perpendicular to the beam (gantry pointing to the floor) in the initial position (0°). When the holder is rotated the angle of the disk towards the beam increases until the disk is parallel with the beam (“edge on,” 90°). This is referred to as Setup 1. The second holder offers a new, alternative measurement position. It positions the disk parallel to the beam for all angles while rotating around its center (Setup 2). Measurements with five to ten dosimeters per point were carried out for 6 MV at 3 and 10 cm depth. Monte Carlo simulations using GEANT4 were performed to simulate the response of the active detector material for several angles. Detector and housing were simulated in detail based on microCT data and communications with the manufacturer. Various material compositions and an all-water geometry were considered. Results For the traditional Setup 1 the response of the OSLD dropped on average by 1.4% ± 0.7% (measurement) and 2.1% ± 0.3% (Monte Carlo simulation) for the 90° orientation compared to 0°. Monte Carlo simulations also showed a strong dependence of the effect on the composition of the sensitive layer. Assuming the layer to completely consist of the active material (Al2O3) results in a 7% drop in response for 90° compared to 0°. Assuming the layer to be completely water, results in a flat response within the simulation uncertainty of about 1%. For the new Setup 2, measurements and Monte Carlo simulations found the angular dependence of the dosimeter to be below 1% and within the measurement uncertainty. Conclusions The dosimeter system exhibits a small angular dependence of approximately 2% which needs to be considered for measurements involving other than normal incident beams angles. This applies in particular to clinicalin vivo measurements where the orientation of the dosimeter is dictated by clinical circumstances and cannot be optimized as otherwise suggested here. When measuring in a phantom, the proposed new setup should be considered. It changes the orientation of the dosimeter so that a coplanar beam arrangement always hits the disk shaped detector material from the thin side and thereby reduces the angular dependence of the response to within the measurement uncertainty of about 1%. This improvement makes the dosimeter more attractive for clinical measurements with multiple coplanar beams in phantoms, as the overall measurement uncertainty is reduced. Similarly, phantom based postal audits can transition from the traditional TLD to the more accurate and convenient OSLD.
Resumo:
Thymine DNA glycosylase (TDG) functions in base excision repair, a DNA repair pathway that acts in a lesion-specific manner to correct individual damaged or altered bases. TDG preferentially catalyzes the removal of thymine and uracil paired with guanine, and is also active on 5-fluorouracil (5-FU) paired with adenine or guanine. The rs4135113 single nucleotide polymorphism (SNP) of TDG is found in 10% of the global population. This coding SNP results in the alteration of Gly199 to Ser. Gly199 is part of a loop responsible for stabilizing the flipped abasic nucleotide in the active site pocket. Biochemical analyses indicate that G199S exhibits tighter binding to both its substrate and abasic product. The persistent accumulation of abasic sites in cells expressing G199S leads to the induction of double-strand breaks (DSBs). Cells expressing the G199S variant also activate a DNA damage response. When expressed in cells, G199S induces genomic instability and cellular transformation. Together, these results suggest that individuals harboring the G199S variant may have increased risk for developing cancer.
Resumo:
The equilibrium geometry, electronic structure and energetic stability of Bi nanolines on clean and hydrogenated Si(001) surfaces have been examined by means of ab initio total energy calculations and scanning tunnelling microscopy. For the Bi nanolines on a clean Si surface the two most plausible structural models, the Miki or M model (Miki et al 1999 Phys. Rev. B 59 14868) and the Haiku or H model (Owen et al 2002 Phys. Rev. Lett. 88 226104), have been examined in detail. The results of the total energy calculations support the stability of the H model over the M model, in agreement with previous theoretical results. For Bi nanolines on the hydrogenated Si(001) surface, we find that an atomic configuration derived from the H model is also more stable than an atomic configuration derived from the M model. However, the energetically less stable (M) model exhibits better agreement with experimental measurements for equilibrium geometry. The electronic structures of the H and M models are very similar. Both models exhibit a semiconducting character, with the highest occupied Bi-derived bands lying at ~0.5 eV below the valence band maximum. Simulated and experimental STM images confirm that at a low negative bias the Bi lines exhibit an 'antiwire' property for both structural models.