159 resultados para 126-788A
Resumo:
The measurement of illicit drug metabolites in raw wastewater is increasingly being adopted as an approach to objectively monitor population-level drug use, and is an effective complement to traditional epidemiological methods. As such, it has been widely applied in western countries. In this study, we utilised this approach to assess drug use patterns over nine days during April 2011 in Hong Kong. Raw wastewater samples were collected from the largest wastewater treatment plant serving a community of approximately 3.5 million people and analysed for excreted drug residues including cocaine, ketamine, methamphetamine, 3,4-methylenedioxymethamphetamine (MDMA) and key metabolites using liquid chromatography coupled with tandem mass spectrometry. The overall drug use pattern determined by wastewater analysis was consistent with that have seen amongst people coming into contact with services in relation to substance use; among our target drugs, ketamine (estimated consumption: 1400–1600 mg/day/1000 people) was the predominant drug followed by methamphetamine (180–200 mg/day/1000 people), cocaine (160–180 mg/day/1000 people) and MDMA (not detected). The levels of these drugs were relatively steady throughout the monitoring period. Analysing samples at higher temporal resolution provided data on diurnal variations of drug residue loads. Elevated ratios of cocaine to benzoylecgonine were identified unexpectedly in three samples during the evening and night, providing evidence for potential dumping events of cocaine. This study provides the first application of wastewater analysis to quantitatively evaluate daily drug use in an Asian metropolitan community. Our data reinforces the benefit of wastewater monitoring to health and law enforcement authorities for strategic planning and evaluation of drug intervention strategies.
Resumo:
Fire resistance of load bearing Light Gauge Steel Frame (LSF) wall systems is important to protect lives and properties in fire accidents. Recent fire tests of LSF walls made of the new cold-formed and welded hollow flange channel (HFC) section studs and the commonly used lipped channel section (LCS) studs have shown the influence of stud sections on the fire resistance rating (FRR) of LSF walls. To advance the use of HFC section studs and to verify the outcomes from the fire tests, finite element models were developed to predict the structural fire performance of LSF walls made of welded HFC section studs. The developed models incorporated the measured non-uniform temperature distributions in LSF wall studs due to the exposure of standard fire on one side, and accurate elevated temperature mechanical properties of steel used in the stud sections. These models simulated the various complexities involved such as thermal bowing and neutral axis shift caused by the non-uniform temperature distribution in the studs. The finite element analysis (FEA) results agreed well with the full scale fire test results including the FRR, outer hot and cold flange temperatures at failure and axial deformation and lateral displacement profiles. They also confirmed the superior fire performance of LSF walls made of HFC section studs. The applicability of both transient and steady state FEA of LSF walls under fire conditions was verified in this study, which also investigated the effects of using various temperature distribution patterns across the cross-section of HFC section studs on the FRR of LSF walls. This paper presents the details of this numerical study and the results.
Resumo:
BACKGROUND: Rupture of atheromatous plaque in the carotid artery often leads to thrombosis and subsequent stroke. The mechanism of plaque rupture is not entirely clear but is thought to be a multi-factorial process involving thinning and weakening of the fibrous cap and biomechanical stress as the trigger leading to plaque rupture. As the cardiovascular system is a classic fatigue environment, the weakening of plaque leading to rupture may be a fatigue process, which is a symptomatically quiescent but potentially progressive failure process. In this study, we used a fatigue analysis based on in vivo magnetic resonance imaging (MRI) to investigate the rupture initiation location, crack propagation path and fatigue life within plaques of asymptomatic and symptomatic individuals. METHODS: Forty non-consecutive subjects (20 symptomatic and 20 asymptomatic) underwent high-resolution multi-sequence in vivo MRI of the carotid bifurcation. Fatigue analysis was performed based on the plaque geometry derived from in vivo MRI of the carotid artery at the point of maximum stenosis. Paris’ Law in fracture mechanics is adopted to determine the fatigue crack growth rate. Incremental crack propagation was dynamically simulated based on stress distributions. Plaque initiation location, crack propagation path and fatigue cycle of symptomatic and asymptomatic individuals were compared. RESULTS: Cracks were often found to begin at the lumen wall at areas of stress concentration. The preferred rupture direction was radial from the lumen center. The crack initially advanced slowly but accelerated as it developed, depending on plaque morphology. The fatigue cycles of symptomatic plaques were significantly less than those in the asymptomatic group (2.3 ± 0.9 vs 3.1 ± 0.7 (x106); p = 0.003). CONCLUSIONS: The number of cycles to rupture in symptomatic patients was higher than those predicted in asymptomatic patients by fatigue analysis, suggesting the possibility that plaques with a less fatigue life may be more prone to be symptomatic and rupture. If further validated by large-scale longitudinal studies, fatigue analysis based on high resolution in vivo MRI could potentially act as a useful tool for risk assessment of carotid atheroma.
Resumo:
The purpose of a phase I trial in cancer is to determine the level (dose) of the treatment under study that has an acceptable level of adverse effects. Although substantial progress has recently been made in this area using parametric approaches, the method that is widely used is based on treating small cohorts of patients at escalating doses until the frequency of toxicities seen at a dose exceeds a predefined tolerable toxicity rate. This method is popular because of its simplicity and freedom from parametric assumptions. In this payer, we consider cases in which it is undesirable to assume a parametric dose-toxicity relationship. We propose a simple model-free approach by modifying the method that is in common use. The approach assumes toxicity is nondecreasing with dose and fits an isotonic regression to accumulated data. At any point in a trial, the dose given is that with estimated toxicity deemed closest to the maximum tolerable toxicity. Simulations indicate that this approach performs substantially better than the commonly used method and it compares favorably with other phase I designs.
Resumo:
Subsampling is a common method for estimating the abundance of species in trawl catches. However, the accuracy of subsampling in representing the total catch has not been assessed. To estimate one possible source of bias due to subsampling, we tested whether the position on trawler sorting trays from which subsamples were taken affected their ability to represent species in catches. This was done by sorting catches into 10 kg subsamples and comparing subsamples taken from different positions on the sorting tray. Comparisons were made after species were grouped into three categories of abundance, either 'rare', 'common' or 'abundant'. A generalised linear model analysis showed that taking subsamples from different positions on the sorting tray had no major effect on estimating the total numbers or weights of fish or invertebrates, or the total number of fish or invertebrate taxa, recorded in each position. Some individual taxa showed differences between positions on the sorting tray (11.5% of taxa ina three-position design; 25% in a five-position design). But consistent and meaningful patterns in the position of these taxa on the sorting tray could only be seen for the pony fish Leiognathus moretoniensis and the saucer scallop Amusium pleuronectes. Because most bycatch laxa are well mixed throughout the catch, subsamples can be taken from any position on trawler sorting trays without introducing bias.
Resumo:
- Background This study examined relationships between adiposity, physical functioning and physical activity. - Methods Obese (N=107) and healthy-weight (N=132) children aged 10-13 years underwent assessments of percent body fat (%BF, dual energy X-ray absorptiometry), knee extensor strength (KE, isokinetic dynamometry), cardiorespiratory fitness (CRF, peak oxygen uptake by cycle ergometry), physical health-related quality of life (HRQOL), worst pain intensity and walking capacity [six-minute walk (6MWT)]. Structural equation modelling was used to assess relationships between variables. - Results Moderate relationships were observed between %BF and 6MWT, KE strength corrected for mass and CRF relative to mass (r -.36 to -.69, P≤.007). Weak relationships were found between: %BF and physical HRQOL (r -.27, P=.008); CRF relative to mass and physical HRQOL (r -.24, P=.003); physical activity and 6MWT (r .17, P=.004). Squared multiple correlations showed that 29.6% variance in physical HRQOL was explained by %BF, pain and CRF relative to mass, while 28% variance in 6MWT was explained by %BF and physical activity. - Conclusions It appears that children with a higher body fat percentage have poorer KE strength, CRF and overall physical functioning. Reducing percent fat appears to be the best target to improve functioning. However, a combined approach to intervention, targeting reductions in body fat percentage, pain and improvements in physical activity and CRF may assist physical functioning.
Resumo:
Impulsivity and hyperactivity share common ground with numerous mental disorders, including schizophrenia. Recently, a population-specific serotonin 2B (5-HT2B) receptor stop codon (ie, HTR2B Q20*) was reported to segregate with severely impulsive individuals, whereas 5-HT2B mutant (Htr2B−/−) mice also showed high impulsivity. Interestingly, in the same cohort, early-onset schizophrenia was more prevalent in HTR2B Q*20 carriers. However, the putative role of 5-HT2B receptor in the neurobiology of schizophrenia has never been investigated. We assessed the effects of the genetic and the pharmacological ablation of 5-HT2B receptors in mice subjected to a comprehensive series of behavioral test screenings for schizophrenic-like symptoms and investigated relevant dopaminergic and glutamatergic neurochemical alterations in the cortex and the striatum. Domains related to the positive, negative, and cognitive symptom clusters of schizophrenia were affected in Htr2B−/− mice, as shown by deficits in sensorimotor gating, in selective attention, in social interactions, and in learning and memory processes. In addition, Htr2B−/− mice presented with enhanced locomotor response to the psychostimulants dizocilpine and amphetamine, and with robust alterations in sleep architecture. Moreover, ablation of 5-HT2B receptors induced a region-selective decrease of dopamine and glutamate concentrations in the dorsal striatum. Importantly, selected schizophrenic-like phenotypes and endophenotypes were rescued by chronic haloperidol treatment. We report herein that 5-HT2B receptor deficiency confers a wide spectrum of antipsychotic-sensitive schizophrenic-like behavioral and psychopharmacological phenotypes in mice and provide first evidence for a role of 5-HT2B receptors in the neurobiology of psychotic disorders
Resumo:
Well known tariff reform rules that are guaranteed to increase welfare will not necessarily increase market access, while rules that are guaranteed to increase market access will not necessarily increase welfare. The present paper proposes a new set of tariff reforms that can achieve both objectives at the same time.
Resumo:
Photodynamic therapy (PDT) is an emerging treatment modality for a range of disease classes, both cancerous and noncancerous. This has brought about an active pursuit of new PDT agents that can be optimized for the unique set of photophysical characteristics that are required for a successful clinical agent. We now describe a totally new class of PDT agent, the BF2-chelated 3,5-diaryl-1H-pyrrol-2-yl-3,5-diarylpyrrol-2-ylideneamines (tetraarylazadipyrromethenes). Optimized synthetic procedures have been developed to facilitate the generation of an array of specifically substituted derivatives to demonstrate how control of key therapeutic parameters such as wavelength of maximum absorbance and singlet-oxygen generation can be achieved. Photosensitizer absorption maxima can be varied within the body's therapeutic window between 650 and 700 nm, with high extinction coefficients ranging from 75,000 to 85,000 M(-1) cm(-1). Photosensitizer singlet-oxygen generation level was modulated by the exploitation of the heavy-atom effect. An array of photosensitizers with and without bromine atom substituents gave rise to a series of compounds with varying singlet-oxygen generation profiles. X-ray structural evidence indicates that the substitution of the bromine atoms has not caused a planarity distortion of the photosensitizer. Comparative singlet-oxygen production levels of each photosensitizer versus two standards demonstrated a modulating effect on singlet-oxygen generation depending upon substituent patterns about the photosensitizer. Confocal laser scanning microscopy imaging of 18a in HeLa cervical carcinoma cells proved that the photosensitizer was exclusively localized to the cellular cytoplasm. In vitro light-induced toxicity assays in HeLa cervical carcinoma and MRC5-SV40 transformed fibroblast cancer cell lines confirmed that the heavy-atom effect is viable in a live cellular system and that it can be exploited to modulate assay efficacy. Direct comparison of the efficacy of the photosensitizers 18b and 19b, which only differ in molecular structure by the presence of two bromine atoms, illustrated an increase in efficacy of more than a 1000-fold in both cell lines. All photosensitizers have very low to nondeterminable dark toxicity in our assay system.