172 resultados para vision
Resumo:
Background To determine the impact of cataract surgery on vision-related quality of life (VRQOL) and examine the association between objective visual measures and change in VRQOL after surgery among bilateral cataract patients in Ho Chi Minh City, Vietnam. Methods A cohort of older patients with bilateral cataract was assessed one week before and one to three months after first eye or both eye cataract surgery. Visual measures including visual acuity, contrast sensitivity and stereopsis were obtained. Vision-related quality of life was assessed using the NEI VFQ-25. Descriptive analyses and a generalized linear estimating equation (GEE) analysis were undertaken to measure change in VRQOL after surgery. Results Four hundred and thirteen patients were assessed before cataract surgery and 247 completed the follow-up assessment one to three months after first or both eye cataract surgery. Overall, VRQOL significantly improved after cataract surgery (p < 0.001) particularly after both eye surgeries. Binocular contrast sensitivity (p < 0.001) and stereopsis (p < 0.001) were also associated with change in VRQOL after cataract surgery. Visual acuity was not associated with VRQOL. Conclusions Cataract surgery significantly improved VRQOL among bilateral cataract patients in Vietnam. Contrast sensitivity as well as stereopsis, rather than visual acuity significantly affected VRQOL after cataract surgery.
Resumo:
This paper proposes new techniques for aircraft shape estimation, passive ranging, and shape-adaptive hidden Markov model filtering which are suitable for a monocular vision-based non-cooperative collision avoidance system. Vision-based passive ranging is an important missing technology that could play a significant role in resolving the sense-and-avoid problem in un-manned aerial vehicles (UAVs); a barrier hindering the wider adoption of UAVs for civilian applications. The feasibility of the pro- posed shape estimation, passive ranging and shape-adaptive filtering techniques is evaluated on flight test data.
Resumo:
Purpose – This paper utilizes diffusion of innovation theory in order to investigate and understand the relationships between HR policies on employee change-related outcomes. In addition, the aim is to explore the role of leader vision at different hierarchical levels in the organization in terms of the relationship of HR policy with employee change-related outcomes. Design/methodology/approach – This quantitative study was conducted in one large Australian government department undergoing major restructuring and cultural change. Data from 624 employees were analyzed in relation to knowledge of HR policies (awareness and clarity), leader vision (organizational and divisional), and change-related outcomes. Findings –Policy knowledge (awareness and clarity) does not have a direct impact on employee change-related outcomes. It is the implementation of policies through the divisional leader that begins to enable favorable employee outcomes. Research limitations/implications – Future research should employ a longitudinal design to investigate relationships over time, and also examine the importance of communication medium and individual preferences in relation to leader vision. Originality/value - This research extends the application of diffusion of innovation theory and leader vision theory to investigate the relationship between HR policy, leader vision, and employees’ change-related outcomes.
Resumo:
We present an approach for the inspection of vertical pole-like infrastructure using a vertical take-off and landing (VTOL) unmanned aerial vehicle and shared autonomy. Inspecting vertical structures, such as light and power distribution poles, is a time consuming, dangerous and expensive task with high operator workload. To address these issues, we propose a VTOL platform that can operate at close-quarters, whilst maintaining a safe stand-off distance and rejecting environmental disturbances. We adopt an Image based Visual Servoing (IBVS) technique using only two line features to stabilise the vehicle with respect to a pole. Visual, inertial and sonar data are used, making the approach suitable for indoor or GPS-denied environments. Results from simulation and outdoor flight experiments demonstrate the system is able to successfully inspect and circumnavigate a pole.
Resumo:
Rapid recursive estimation of hidden Markov Model (HMM) parameters is important in applications that place an emphasis on the early availability of reasonable estimates (e.g. for change detection) rather than the provision of longer-term asymptotic properties (such as convergence, convergence rate, and consistency). In the context of vision- based aircraft (image-plane) heading estimation, this paper suggests and evaluates the short-data estimation properties of 3 recursive HMM parameter estimation techniques (a recursive maximum likelihood estimator, an online EM HMM estimator, and a relative entropy based estimator). On both simulated and real data, our studies illustrate the feasibility of rapid recursive heading estimation, but also demonstrate the need for careful step-size design of HMM recursive estimation techniques when these techniques are intended for use in applications where short-data behaviour is paramount.
Resumo:
Vision-based place recognition involves recognising familiar places despite changes in environmental conditions or camera viewpoint (pose). Existing training-free methods exhibit excellent invariance to either of these challenges, but not both simultaneously. In this paper, we present a technique for condition-invariant place recognition across large lateral platform pose variance for vehicles or robots travelling along routes. Our approach combines sideways facing cameras with a new multi-scale image comparison technique that generates synthetic views for input into the condition-invariant Sequence Matching Across Route Traversals (SMART) algorithm. We evaluate the system’s performance on multi-lane roads in two different environments across day-night cycles. In the extreme case of day-night place recognition across the entire width of a four-lane-plus-median-strip highway, we demonstrate performance of up to 44% recall at 100% precision, where current state-of-the-art fails.
Resumo:
Background In vision, there is a trade-off between sensitivity and resolution, and any eye which maximises information gain at low light levels needs to be large. This imposes exacting constraints upon vision in nocturnal flying birds. Eyes are essentially heavy, fluid-filled chambers, and in flying birds their increased size is countered by selection for both reduced body mass and the distribution of mass towards the body core. Freed from these mass constraints, it would be predicted that in flightless birds nocturnality should favour the evolution of large eyes and reliance upon visual cues for the guidance of activity. Methodology/Principal Findings We show that in Kiwi (Apterygidae), flightlessness and nocturnality have, in fact, resulted in the opposite outcome. Kiwi show minimal reliance upon vision indicated by eye structure, visual field topography, and brain structures, and increased reliance upon tactile and olfactory information. Conclusions/Significance This lack of reliance upon vision and increased reliance upon tactile and olfactory information in Kiwi is markedly similar to the situation in nocturnal mammals that exploit the forest floor. That Kiwi and mammals evolved to exploit these habitats quite independently provides evidence for convergent evolution in their sensory capacities that are tuned to a common set of perceptual challenges found in forest floor habitats at night and which cannot be met by the vertebrate visual system. We propose that the Kiwi visual system has undergone adaptive regressive evolution driven by the trade-off between the relatively low rate of gain of visual information that is possible at low light levels, and the metabolic costs of extracting that information.
Resumo:
This paper overviews the development of a vision-based AUV along with a set of complementary operational strategies to allow reliable autonomous data collection in relatively shallow water and coral reef environments. The development of the AUV, called Starbug, encountered many challenges in terms of vehicle design, navigation and control. Some of these challenges are discussed with focus on operational strategies for estimating and reducing the total navigation error when using lower-resolution sensing modalities. Results are presented from recent field trials which illustrate the ability of the vehicle and associated operational strategies to enable rapid collection of visual data sets suitable for marine research applications.
Resumo:
This paper describes the development and experimental evaluation of a novel vision-based Autonomous Surface Vehicle with the purpose of performing coordinated docking manoeuvres with a target, such as an Autonomous Underwater Vehicle, on the water’s surface. The system architecture integrates two small processor units; the first performs vehicle control and implements a virtual force obstacle avoidance and docking strategy, with the second performing vision-based target segmentation and tracking. Furthermore, the architecture utilises wireless sensor network technology allowing the vehicle to be observed by, and even integrated within an ad-hoc sensor network. The system performance is demonstrated through real-world experiments.
Resumo:
Hot metal carriers (HMCs) are large forklift-type vehicles used to move molten metal in aluminum smelters. This paper reports on field experiments that demonstrate that HMCs can operate autonomously and in particular can use vision as a primary sensor to locate the load of aluminum. We present our complete system but focus on the vision system elements and also detail experiments demonstrating reliable operation of the materials handling task. Two key experiments are described, lasting 2 and 5 h, in which the HMC traveled 15 km in total and handled the load 80 times.
Resumo:
We propose a method for learning specific object representations that can be applied (and reused) in visual detection and identification tasks. A machine learning technique called Cartesian Genetic Programming (CGP) is used to create these models based on a series of images. Our research investigates how manipulation actions might allow for the development of better visual models and therefore better robot vision. This paper describes how visual object representations can be learned and improved by performing object manipulation actions, such as, poke, push and pick-up with a humanoid robot. The improvement can be measured and allows for the robot to select and perform the `right' action, i.e. the action with the best possible improvement of the detector.
Resumo:
The mining industry is highly suitable for the application of robotics and automation technology since the work is both arduous and dangerous. Visual servoing is a means of integrating noncontact visual sensing with machine control to augment or replace operator based control. This article describes two of our current mining automation projects in order to demonstrate some, perhaps unusual, applications of visual servoing, and also to illustrate some very real problems with robust computer vision
Resumo:
The International Journal of Robotics Research (IJRR) has a long history of publishing the state-of-the-art in the field of robotic vision. This is the fourth special issue devoted to the topic. Previous special issues were published in 2012 (Volume 31, No. 4), 2010 (Volume 29, Nos 2–3) and 2007 (Volume 26, No. 7, jointly with the International Journal of Computer Vision). In a closely related field was the special issue on Visual Servoing published in IJRR, 2003 (Volume 22, Nos 10–11). These issues nicely summarize the highlights and progress of the past 12 years of research devoted to the use of visual perception for robotics.