234 resultados para tablet compression
Resumo:
Adequate blood supply and sufficient mechanical stability are necessary for timely fracture healing. Damage to vessels impairs blood supply; hindering the transport of oxygen which is an essential metabolite for cells involved in repair. The degree of mechanical stability determines the mechanical conditions in the healing tissues. The mechanical conditions can influence tissue differentiation and may also inhibit revascularization. Knowledge of the actual conditions in a healing fracture in vivo is extremely limited. This study aimed to quantify the pressure, oxygen tension and temperature in the external callus during the early phase of bone healing. Six Merino-mix sheep underwent a tibial osteotomy. The tibia was stabilized with a standard mono-lateral external fixator. A multi-parameter catheter was placed adjacent to the osteotomy gap on the medial aspect of the tibia. Measurements of oxygen tension and temperature were performed for ten days post-op. Measurements of pressure were performed during gait on days three and seven. The ground reaction force and the interfragmentary movements were measured simultaneously. The maximum pressure during gait increased (p=0.028) from three (41.3 [29.2-44.1] mm Hg) to seven days (71.8 [61.8-84.8] mm Hg). During the same interval, there was no change (p=0.92) in the peak ground reaction force or in the interfragmentary movement (compression: p=0.59 and axial rotation: p=0.11). Oxygen tension in the haematoma (74.1 mm Hg [68.6-78.5]) was initially high post-op and decreased steadily over the first five days. The temperature increased over the first four days before reaching a plateau at approximately 38.5 degrees C on day four. This study is the first to report pressure, oxygen tension and temperature in the early callus tissues. The magnitude of pressure increased even though weight bearing and IFM remained unchanged. Oxygen tensions were initially high in the haematoma and fell gradually with a low oxygen environment first established after four to five days. This study illustrates that in bone healing the local environment for cells may not be considered constant with regard to oxygen tension, pressure and temperature.
Resumo:
BACKGROUND: Treatment of proximal humerus fractures in elderly patients is challenging because of reduced bone quality. We determined the in vitro characteristics of a new implant developed to target the remaining bone stock, and compared it with an implant in clinical use. METHODS: Following osteotomy, left and right humeral pairs from cadavers were treated with either the Button-Fix or the Humerusblock fixation system. Implant stiffness was determined for three clinically relevant cases of load: axial compression, torsion, and varus bending. In addition, a cyclic varus-bending test was performed. RESULTS: We found higher stiffness values for the humeri treated with the ButtonFix system--with almost a doubling of the compression, torsion, and bending stiffness values. Under dynamic loading, the ButtonFix system had superior stiffness and less K-wire migration compared to the Humerusblock system. INTERPRETATION: When compared to the Humerusblock design, the ButtonFix system showed superior biomechanical properties, both static and dynamic. It offers a minimally invasive alternative for the treatment of proximal humerus fractures.
Resumo:
Objective: To test if subpopulations of chondrocytes from different cartilage zones could be used to engineer cartilage constructs with features of normal stratification. Design: Chondrocytes from the superficial and middle zones of immature bovine cartilage were cultured in alginate, released, and seeded either separately or sequentially to form cartilage constructs. Constructs were cultured for 1 or 2 weeks and were assessed for growth, compressive properties, and deposition, and localization of matrix molecules and superficial zone protein (SZP). Results: The cartilaginous constructs formed from superficial zone chondrocytes exhibited less matrix growth and lower compressive properties than constructs from middle zone chondrocytes, with the stratified superficial-middle constructs exhibiting intermediate properties. Expression of SZP was highest at the construct surfaces, with the localization of SZP in superficial-middle constructs being concentrated at the superficial surface. Conclusions: Manipulation of subpopulations of chondrocytes can be useful in engineering cartilage tissue with a biomimetic approach, and in fabricating constructs that exhibit stratified features of normal articular cartilage. (C) 2003 OsteoArthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a material model to simulate load induced cracking in Reinforced Concrete (RC) elements in ABAQUS finite element package. Two numerical material models are used and combined to simulate complete stress-strain behaviour of concrete under compression and tension including damage properties. Both numerical techniques used in the present material model are capable of developing the stress-strain curves including strain softening regimes only using ultimate compressive strength of concrete, which is easily and practically obtainable for many of the existing RC structures or those to be built. Therefore, the method proposed in this paper is valuable in assessing existing RC structures in the absence of more detailed test results. The numerical models are slightly modified from the original versions to be comparable with the damaged plasticity model used in ABAQUS. The model is validated using different experiment results for RC beam elements presented in the literature. The results indicate a good agreement with load vs. displacement curve and observed crack patterns.
Resumo:
Aim To identify relationships between preventive activities, psychosocial factors and leg ulcer recurrence in patients with chronic venous leg ulcers. Background Chronic venous leg ulcers are slow to heal and frequently recur, resulting in years of suffering and intensive use of health care resources. Methods A prospective longitudinal study was undertaken with a sample of 80 patients with a venous leg ulcer recruited when their ulcer healed. Data were collected from 2006–2009 from medical records on demographics, medical history and ulcer history; and from self-report questionnaires on physical activity, nutrition, preventive activities and psychosocial measures. Follow-up data were collected via questionnaires every three months for 12 months after healing. Median time to recurrence was calculated using the Kaplan-Meier method. A Cox proportional-hazards regression model was used to adjust for potential confounders and determine effects of preventive strategies and psychosocial factors on recurrence. Results: There were 35 recurrences in a sample of 80 participants. Median time to recurrence was 27 weeks. After adjustment for potential confounders, a Cox proportional hazards regression model found that at least an hour/day of leg elevation, six or more days/week in Class 2 (20–25mmHg) or 3 (30–40mmHg) compression hosiery, higher social support scale scores and higher General Self-Efficacy scores remained significantly associated (p<0.05) with a lower risk of recurrence, while male gender and a history of DVT remained significant risk factors for recurrence. Conclusion Results indicate that leg elevation, compression hosiery, high levels of self-efficacy and strong social support will help prevent recurrence.
Resumo:
Background: Fusionless scoliosis surgery is an early-stage treatment for idiopathic scoliosis which claims potential advantages over current fusion-based surgical procedures. Anterior vertebral stapling using a shape memory alloy staple is one such approach. Despite increasing interest in this technique, little is known about the effects on the spine following insertion, or the mechanism of action of the staple. The purpose of this study was to investigate the biomechanical consequences of staple insertion in the anterior thoracic spine, using in vitro experiments on an immature bovine model. Methods: Individual calf spine thoracic motion segments were tested in flexion, extension, lateral bending and axial rotation. Changes in motion segment rotational stiffness following staple insertion were measured on a series of 14 specimens. Strain gauges were attached to three of the staples in the series to measure forces transmitted through the staple during loading. A micro-CT scan of a single specimen was performed after loading to qualitatively examine damage to the vertebral bone caused by the staple. Findings: Small but statistically significant decreases in bending stiffness occurred in flexion,extension, lateral bending away from the staple, and axial rotation away from the staple. Each strain-gauged staple showed a baseline compressive loading following insertion which was seen to gradually decrease during testing. Post-test micro-CT showed substantial bone and growth plate damage near the staple. Interpretation: Based on our findings it is possible that growth modulation following staple insertion is due to tissue damage rather than sustained mechanical compression of the motion segment.
Resumo:
INTRODUCTION. Following anterior thoracoscopic instrumentation and fusion for the treatment of thoracic AIS, implant related complications have been reported as high as 20.8%. Currently the magnitudes of the forces applied to the spine during anterior scoliosis surgery are unknown. The aim of this study was to measure the segmental compressive forces applied during anterior single rod instrumentation in a series of adolescent idiopathic scoliosis patients. METHODS. A force transducer was designed, constructed and retrofitted to a surgical cable compression tool, routinely used to apply segmental compression during anterior scoliosis correction. Transducer output was continuously logged during the compression of each spinal joint, the output at completion converted to an applied compression force using calibration data. The angle between adjacent vertebral body screws was also measured on intra-operative frontal plane fluoroscope images taken both before and after each joint compression. The difference in angle between the two images was calculated as an estimate for the achieved correction at each spinal joint. RESULTS. Force measurements were obtained for 15 scoliosis patients (Aged 11-19 years) with single thoracic curves (Cobb angles 47˚- 67˚). In total, 95 spinal joints were instrumented. The average force applied for a single joint was 540 N (± 229 N)ranging between 88 N and 1018 N. Experimental error in the force measurement, determined from transducer calibration was ± 43 N. A trend for higher forces applied at joints close to the apex of the scoliosis was observed. The average joint correction angle measured by fluoroscope imaging was 4.8˚ (±2.6˚, range 0˚-12.6˚). CONCLUSION. This study has quantified in-vivo, the intra-operative correction forces applied by the surgeon during anterior single rod instrumentation. This data provides a useful contribution towards an improved understanding of the biomechanics of scoliosis correction. In particular, this data will be used as input for developing patient-specific finite element simulations of scoliosis correction surgery.
Resumo:
This study investigated the grain size dependence of mechanical properties and deformation mechanisms of microcrystalline (mc) and nanocrystalline (nc: grain size below 100 nm) Mg-5wt% Al alloys. The Hall-Petch relationship was investigated by both instrumented indentation tests and compression tests. The test results from the indentation tests and compression tests match well with each other. The breakdown of Hall-Petch relationship and the elevated strain rate sensitivity (SRS) of present Mg-5wt% Al alloys when the grain size was reduced below 58nm indicated the more significant role of GB mediated mechanisms in plastic deformation process. However, the relatively smaller SRS values compared to GB sliding and coble creep process suggested the plastic deformation in the current study is still dislocation mediated mechanism dominant.
Resumo:
Based on the embedded atom method (EAM) and molecular dynamics (MD) method, the deformation properties of Cu nanowires with different single defects under dynamic compression have been studied. The mechanical behaviours of the perfect nanowire are first studied, and the critical stress decreases with the increase of the nanowire’s length, which is well agreed with the modified Euler theory. We then consider the effects to the buckling phenomenon resulted from different defects. It is found that obvious decrease of the critical stress is resulted from different defects, and the largest decrease is found in nanowire with the surface vertical defect. Surface defects are found exerting larger influence than internal defects. The buckling duration is found shortened due to different defects except the nanowire with surface horizon defect, which is also found possessing the largest deflection. Different deflections are also observed for different defected nanowires. It is find that due to surface defects, only deflection in one direction is happened, but for internal defects, more complex deflection circumstances are observed.
Resumo:
This study demonstrates the feasibility of additive manufactured poly(3-caprolactone)/silanized tricalcium phosphate (PCL/TCP(Si)) scaffolds coated with carbonated hydroxyapatite (CHA)-gelatin composite for bone tissue engineering. In order to reinforce PCL/TCP scaffolds to match the mechanical properties of cancellous bone, TCP has been modified with 3-glycidoxypropyl trimethoxysilane (GPTMS) and incorporated into PCL to synthesize a PCL/TCP(Si) composite. The successful modification is confirmed by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) analysis. Additive manufactured PCL/TCP(Si) scaffolds have been fabricated using a screw extrusion system (SES). Compression testing demonstrates that both the compressive modulus and compressive yield strength of the developed PCL/TCP(Si) scaffolds fall within the lower ranges of mechanical properties for cancellous bone, with a compressive modulus and compressive yield strength of 6.0 times and 2.3 times of those of PCL/TCP scaffolds, respectively. To enhance the osteoconductive property of the developed PCL/TCP(Si) scaffolds, a CHA-gelatin composite has been coated onto the scaffolds via a biomimetic co-precipitation process, which is verified by using scanning electron microscopy (SEM) and XPS. Confocal laser microscopy and SEM images reveal a most uniform distribution of porcine bone marrow stromal cells (BMSCs) and cellsheet accumulation on the CHA-gelatin composite coated PCL/TCP(Si) scaffolds. The proliferation rate of BMSCs on the CHA-gelatin composite coated PCL/TCP(Si) scaffolds is 2.0 and 1.4 times higher compared to PCL/TCP(Si) and CHA coated PCL/TCP(Si) scaffolds, respectively, by day 10. Furthermore, the reverse transcription polymerase chain reaction (RT-PCR) and western blot analyses reveal that CHA-gelatin composite coated PCL/TCP(Si) scaffolds stimulate osteogenic differentiation of BMSCs the most compared to the other scaffolds. In vitro results of SEM, confocal microscopy and proliferation rate also show that there is no detrimental effect of GPTMS modification on biocompatibility of the scaffolds.
Resumo:
Venous leg ulceration is a serious condition affecting 1 – 3% of the population. Decline in the function of the calf muscle pump is correlated with venous ulceration. Many previous studies have reported an improvement in the function of the calf muscle pump, endurance of the calf muscle and increased range of ankle motion after structured exercise programs. However, there is a paucity of published research that assesses if these improvements result in an improvement in the healing rates of venous ulcers. The primary purpose of this pilot study was to establish the feasibility of a homebased progressive resistance exercise program and examine if there was any clinical significance or trend toward healing. The secondary aims were to examine the benefit of a home-based progressive resistance exercise program on calf muscle pump function and physical parameters. The methodology used was a randomised controlled trial where eleven participants were randomised into an intervention (n = 6) or control group (n = 5). Participants who were randomised to receive a 12-week home-based progressive resistance exercise program were instructed through weekly face-to-face consultations during their wound clinic appointment by the author. Control group participants received standard wound care and compression therapy. Changes in ulcer parameters were measured fortnightly at the clinic (number healed at 12 weeks, percentage change in area and pressure ulcer score healing score). An air plethysmography test was performed at baseline and following the 12 weeks of training to determine changes in calf muscle pump function. Functional measures included maximum number of heel raises (endurance), maximal isometric plantar flexion (strength) and range of ankle motion (ROAM); these tests were conducted at baseline, week 6 and week 12. The sample for the study was drawn from the Princess Alexandra Hospital in Brisbane, Australia. Participants with venous leg ulceration who met the inclusion criteria were recruited. The participants were screened via duplex scanning and ankle brachial pressure index (ABPI) to ensure they did not have any arterial complications. Participants were excluded if there was evidence of cellulitis. Demographic data were obtained from each participant and details regarding medical history, quality of life and geriatric depression scores were collected at baseline. Both the intervention and control group were required to complete a weekly exercise diary to monitor activity levels between groups. To test for the effect of the intervention over time, a repeated measures analysis of variance was conducted on the major outcome variables. Group (intervention versus control) was the between subject factor and time (baseline, week 6, week 12) was the within subject or repeated measures factor. Due to the small sample size, further tests were conducted to check the assumptions of the statistical test to be used. The results showed that Mauchly.s Test, the Sphericity assumptions of repeated measures for ANOVA were met. Further tests of homogeneity of variance assumptions also confirmed that this assumption was met. Data analysis was conducted using the software package SPSS for Windows Release 17.0. The pilot study proved feasible with all of the intervention (n=6) participants continuing with the resistance program for the 12 week duration and no deleterious effects noted. Clinical significance was observed in the intervention group with a 32% greater change in ulcer size (p= 0.26) than the control group, and a 10% (p = 0.74) greater difference between the numbers healed compared to the control group. Statistical significance was observed for the ejection fraction (p = 0.05), residual volume fraction (p = 0.04) and ROAM (p = 0.01), which all improved significantly in the intervention group over time. These results are encouraging, nevertheless, further investigations seem warranted to examine the effect exercise has on the healing rates of venous leg ulcers, with a multistudy site, larger sample size and longer follow up period.
Resumo:
In just under 3 months worldwide sales of Apple's iPad tablet device stood at over 3 million units sold. The iPad device, along with rival products signify a shift in the way in which print and other media products are purchased and consumed by users. While facing initial skepticism about the uptake of the device numerous industries have been quick to adapt the device to their specific needs. Based around a newly developed six point typology of “post PC” device utility this project undertook a significant review of publicly available material to identify worldwide trends in iPad adoption and use within the tertiary sector.
Resumo:
Diesel engine fuel injector faults can lead to reduced power, increased fuel consumption and greater exhaust emission levels and if left unchecked, can eventually lead to premature engine failure. This paper provides an overview of the Diesel, or compression ignition combustion process, and of the two basic fuel injector nozzle designs used in Diesel engines, namely, the pintle-type and hole-type nozzles. Also described are some common faults associated with these two types of fuel injector nozzles and the techniques previously used to experimentally simulate these faults. This paper also presents a recent experimental campaign undertaken using two different diesel engines whereby various fuel injector nozzle faults were induced into the engines. The first series of tests was undertaken using a turbo-charged 5.9 litre; Cummins Diesel engine whist the second series of tests was undertaken using a naturally aspirated 4 cylinder, 2.216 litre, Perkins Diesel engine. Data corresponding to different injector fault conditions was captured using in-cylinder pressure, and acoustic emission transducers along with both crank-angle encoder and top-dead centre reference signals. Using averaged in-cylinder pressure signals, it was possible to qualify the severity of the faults whilst averaged acoustic emission signals were in turn, used as the basis for wavelets decomposition. Initial observations from this signal decomposition are also presented and discussed.
Resumo:
Cold-formed steel stud walls are a major component of Light Steel Framing (LSF) building systems used in commercial, industrial and residential buildings. In the conventional LSF stud wall systems, thin steel studs are protected from fire by placing one or two layers of plasterboard on both sides with or without cavity insulation. However, there is very limited data about the structural and thermal performance of stud wall systems while past research showed contradicting results, for example, about the benefits of cavity insulation. This research was therefore conducted to improve the knowledge and understanding of the structural and thermal performance of cold-formed steel stud wall systems (both load bearing and non-load bearing) under fire conditions and to develop new improved stud wall systems including reliable and simple methods to predict their fire resistance rating. Full scale fire tests of cold-formed steel stud wall systems formed the basis of this research. This research proposed an innovative LSF stud wall system in which a composite panel made of two plasterboards with insulation between them was used to improve the fire rating. Hence fire tests included both conventional steel stud walls with and without the use of cavity insulation and the new composite panel system. A propane fired gas furnace was specially designed and constructed first. The furnace was designed to deliver heat in accordance with the standard time temperature curve as proposed by AS 1530.4 (SA, 2005). A compression loading frame capable of loading the individual studs of a full scale steel stud wall system was also designed and built for the load-bearing tests. Fire tests included comprehensive time-temperature measurements across the thickness and along the length of all the specimens using K type thermocouples. They also included the measurements of load-deformation characteristics of stud walls until failure. The first phase of fire tests included 15 small scale fire tests of gypsum plasterboards, and composite panels using different types of insulating material of varying thickness and density. Fire performance of single and multiple layers of gypsum plasterboards was assessed including the effect of interfaces between adjacent plasterboards on the thermal performance. Effects of insulations such as glass fibre, rock fibre and cellulose fibre were also determined while the tests provided important data relating to the temperature at which the fall off of external plasterboards occurred. In the second phase, nine small scale non-load bearing wall specimens were tested to investigate the thermal performance of conventional and innovative steel stud wall systems. Effects of single and multiple layers of plasterboards with and without vertical joints were investigated. The new composite panels were seen to offer greater thermal protection to the studs in comparison to the conventional panels. In the third phase of fire tests, nine full scale load bearing wall specimens were tested to study the thermal and structural performance of the load bearing wall assemblies. A full scale test was also conducted at ambient temperature. These tests showed that the use of cavity insulation led to inferior fire performance of walls, and provided good explanations and supporting research data to overcome the incorrect industry assumptions about cavity insulation. They demonstrated that the use of insulation externally in a composite panel enhanced the thermal and structural performance of stud walls and increased their fire resistance rating significantly. Hence this research recommends the use of the new composite panel system for cold-formed LSF walls. This research also included steady state tensile tests at ambient and elevated temperatures to address the lack of reliable mechanical properties for high grade cold-formed steels at elevated temperatures. Suitable predictive equations were developed for calculating the yield strength and elastic modulus at elevated temperatures. In summary, this research has developed comprehensive experimental thermal and structural performance data for both the conventional and the proposed non-load bearing and load bearing stud wall systems under fire conditions. Idealized hot flange temperature profiles have been developed for non-insulated, cavity insulated and externally insulated load bearing wall models along with suitable equations for predicting their failure times. A graphical method has also been proposed to predict the failure times (fire rating) of non-load bearing and load bearing walls under different load ratios. The results from this research are useful to both fire researchers and engineers working in this field. Most importantly, this research has significantly improved the knowledge and understanding of cold-formed LSF walls under fire conditions, and developed an innovative LSF wall system with increased fire rating. It has clearly demonstrated the detrimental effects of using cavity insulation, and has paved the way for Australian building industries to develop new wall panels with increased fire rating for commercial applications worldwide.
Resumo:
Magnesium alloys have been of growing interest to various engineering applications, such as the automobile, aerospace, communication and computer industries due to their low density, high specific strength, good machineability and availability as compared with other structural materials. However, most Mg alloys suffer from poor plasticity due to their Hexagonal Close Packed structure. Grain refinement has been proved to be an effective method to enhance the strength and alter the ductility of the materials. Several methods have been proposed to produce materials with nanocrystalline grain structures. So far, most of the research work on nanocrystalline materials has been carried out on Face-Centered Cubic and Body-Centered Cubic metals. However, there has been little investigation of nanocrystalline Mg alloys. In this study, bulk coarse-grained and nanocrystalline Mg alloys were fabricated by a mechanical alloying method. The mixed powder of Mg chips and Al powder was mechanically milled under argon atmosphere for different durations of 0 hours (MA0), 10 hours (MA10), 20 hours (MA20), 30 hours (MA30) and 40 hours (MA40), followed by compaction and sintering. Then the sintered billets were hot-extruded into metallic rods with a 7 mm diameter. The obtained Mg alloys have a nominal composition of Mg–5wt% Al, with grain sizes ranging from 13 μm down to 50 nm, depending on the milling durations. The microstructure characterization and evolution after deformation were carried out by means of Optical microscopy, X-Ray Diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy, Scanning Probe Microscopy and Neutron Diffraction techniques. Nanoindentaion, compression and micro-compression tests on micro-pillars were used to study the size effects on the mechanical behaviour of the Mg alloys. Two kinds of size effects on the mechanical behaviours and deformation mechanisms were investigated: grain size effect and sample size effect. The nanoindentation tests were composed of constant strain rate, constant loading rate and indentation creep tests. The normally reported indentation size effect in single crystal and coarse-grained crystals was observed in both the coarse-grained and nanocrystalline Mg alloys. Since the indentation size effect is correlated to the Geometrically Necessary Dislocations under the indenter to accommodate the plastic deformation, the good agreement between the experimental results and the Indentation Size Effect model indicated that, in the current nanocrystalline MA20 and MA30, the dislocation plasticity was still the dominant deformation mechanism. Significant hardness enhancement with decreasing grain size, down to 58 nm, was found in the nanocrystalline Mg alloys. Further reduction of grain size would lead to a drop in the hardness values. The failure of grain refinement strengthening with the relatively high strain rate sensitivity of nanocrystalline Mg alloys suggested a change in the deformation mechanism. Indentation creep tests showed that the stress exponent was dependent on the loading rate during the loading section of the indentation, which was related to the dislocation structures before the creep starts. The influence of grain size on the mechanical behaviour and strength of extruded coarse-grained and nanocrystalline Mg alloys were investigated using uniaxial compression tests. The macroscopic response of the Mg alloys transited from strain hardening to strain softening behaviour, with grain size reduced from 13 ìm to 50 nm. The strain hardening was related to the twinning induced hardening and dislocation hardening effect, while the strain softening was attributed to the localized deformation in the nanocrystalline grains. The tension–compression yield asymmetry was noticed in the nanocrystalline region, demonstrating the twinning effect in the ultra-fine-grained and nanocrystalline region. The relationship k tensions < k compression failed in the nanocrystalline Mg alloys; this was attributed to the twofold effect of grain size on twinning. The nanocrystalline Mg alloys were found to exhibit increased strain rate sensitivity with decreasing grain size, with strain rate ranging from 0.0001/s to 0.01/s. Strain rate sensitivity of coarse-grained MA0 was increased by more than 10 times in MA40. The Hall-Petch relationship broke down at a critical grain size in the nanocrystalline region. The breakdown of the Hall-Petch relationship and the increased strain rate sensitivity were due to the localized dislocation activities (generalization and annihilation at grain boundaries) and the more significant contribution from grain boundary mediated mechanisms. In the micro-compression tests, the sample size effects on the mechanical behaviours were studied on MA0, MA20 and MA40 micro-pillars. In contrast to the bulk samples under compression, the stress-strain curves of MA0 and MA20 micro-pillars were characterized with a number of discrete strain burst events separated by nearly elastic strain segments. Unlike MA0 and MA20, the stress-strain curves of MA40 micro-pillars were smooth, without obvious strain bursts. The deformation mechanisms of the MA0 and MA20 micro-pillars under micro-compression tests were considered to be initially dominated by deformation twinning, followed by dislocation mechanisms. For MA40 pillars, the deformation mechanisms were believed to be localized dislocation activities and grain boundary related mechanisms. The strain hardening behaviours of the micro-pillars suggested that the grain boundaries in the nanocrystalline micro-pillars would reduce the source (nucleation sources for twins/dislocations) starvation hardening effect. The power law relationship of the yield strength on pillar dimensions in MA0, MA20 supported the fact that the twinning mechanism was correlated to the pre-existing defects, which can promote the nucleation of the twins. Then, we provided a latitudinal comparison of the results and conclusions derived from the different techniques used for testing the coarse-grained and nanocrystalline Mg alloy; this helps to better understand the deformation mechanisms of the Mg alloys as a whole. At the end, we summarized the thesis and highlighted the conclusions, contributions, innovations and outcomes of the research. Finally, it outlined recommendations for future work.