194 resultados para single nucleotide polymorphisms
Resumo:
A genome-wide association study (GWAS) of educational attainment was conducted in a discovery sample of 101,069 individuals and a replication sample of 25,490. Three independent single-nucleotide polymorphisms (SNPs) are genome-wide significant (rs9320913, rs11584700, rs4851266), and all three replicate. Estimated effects sizes are small (coefficient of determination R(2) approximately 0.02%), approximately 1 month of schooling per allele. A linear polygenic score from all measured SNPs accounts for approximately 2% of the variance in both educational attainment and cognitive function. Genes in the region of the loci have previously been associated with health, cognitive, and central nervous system phenotypes, and bioinformatics analyses suggest the involvement of the anterior caudate nucleus. These findings provide promising candidate SNPs for follow-up work, and our effect size estimates can anchor power analyses in social-science genetics.
Resumo:
Prior genome-wide association studies (GWAS) of major depressive disorder (MDD) have met with limited success. We sought to increase statistical power to detect disease loci by conducting a GWAS mega-analysis for MDD. In the MDD discovery phase, we analyzed more than 1.2 million autosomal and X chromosome single-nucleotide polymorphisms (SNPs) in 18 759 independent and unrelated subjects of recent European ancestry (9240 MDD cases and 9519 controls). In the MDD replication phase, we evaluated 554 SNPs in independent samples (6783 MDD cases and 50 695 controls). We also conducted a cross-disorder meta-analysis using 819 autosomal SNPs with P<0.0001 for either MDD or the Psychiatric GWAS Consortium bipolar disorder (BIP) mega-analysis (9238 MDD cases/8039 controls and 6998 BIP cases/7775 controls). No SNPs achieved genome-wide significance in the MDD discovery phase, the MDD replication phase or in pre-planned secondary analyses (by sex, recurrent MDD, recurrent early-onset MDD, age of onset, pre-pubertal onset MDD or typical-like MDD from a latent class analyses of the MDD criteria). In the MDD-bipolar cross-disorder analysis, 15 SNPs exceeded genome-wide significance (P<5 x 10(-8)), and all were in a 248 kb interval of high LD on 3p21.1 (chr3:52 425 083-53 822 102, minimum P=5.9 x 10(-9) at rs2535629). Although this is the largest genome-wide analysis of MDD yet conducted, its high prevalence means that the sample is still underpowered to detect genetic effects typical for complex traits. Therefore, we were unable to identify robust and replicable findings. We discuss what this means for genetic research for MDD. The 3p21.1 MDD-BIP finding should be interpreted with caution as the most significant SNP did not replicate in MDD samples, and genotyping in independent samples will be needed to resolve its status.
Resumo:
Common diseases such as endometriosis (ED), Alzheimer's disease (AD) and multiple sclerosis (MS) account for a significant proportion of the health care burden in many countries. Genome-wide association studies (GWASs) for these diseases have identified a number of individual genetic variants contributing to the risk of those diseases. However, the effect size for most variants is small and collectively the known variants explain only a small proportion of the estimated heritability. We used a linear mixed model to fit all single nucleotide polymorphisms (SNPs) simultaneously, and estimated genetic variances on the liability scale using SNPs from GWASs in unrelated individuals for these three diseases. For each of the three diseases, case and control samples were not all genotyped in the same laboratory. We demonstrate that a careful analysis can obtain robust estimates, but also that insufficient quality control (QC) of SNPs can lead to spurious results and that too stringent QC is likely to remove real genetic signals. Our estimates show that common SNPs on commercially available genotyping chips capture significant variation contributing to liability for all three diseases. The estimated proportion of total variation tagged by all SNPs was 0.26 (SE 0.04) for ED, 0.24 (SE 0.03) for AD and 0.30 (SE 0.03) for MS. Further, we partitioned the genetic variance explained into five categories by a minor allele frequency (MAF), by chromosomes and gene annotation. We provide strong evidence that a substantial proportion of variation in liability is explained by common SNPs, and thereby give insights into the genetic architecture of the diseases.
Resumo:
The pathogenesis of androgenetic alopecia (AGA, male-pattern baldness) is driven by androgens, and genetic predisposition is the major prerequisite. Candidate gene and genome-wide association studies have reported that single-nucleotide polymorphisms (SNPs) at eight different genomic loci are associated with AGA development. However, a significant fraction of the overall heritable risk still awaits identification. Furthermore, the understanding of the pathophysiology of AGA is incomplete, and each newly associated locus may provide novel insights into contributing biological pathways. The aim of this study was to identify unknown AGA risk loci by replicating SNPs at the 12 genomic loci that showed suggestive association (5 x 10(-8)
Resumo:
Major depressive disorder (MDD) is a common complex disorder with a partly genetic etiology. We conducted a genome-wide association study of the MDD2000+ sample (2431 cases, 3673 screened controls and >1 M imputed single-nucleotide polymorphisms (SNPs)). No SNPs achieved genome-wide significance either in the MDD2000+ study, or in meta-analysis with two other studies totaling 5763 cases and 6901 controls. These results imply that common variants of intermediate or large effect do not have main effects in the genetic architecture of MDD. Suggestive but notable results were: (a) gene-based tests suggesting roles for adenylate cyclase 3 (ADCY3, 2p23.3) and galanin (GAL, 11q13.3); published functional evidence relates both of these to MDD and serotonergic signaling; (b) support for the bipolar disorder risk variant SNP rs1006737 in CACNA1C (P=0.020, odds ratio=1.10), and; (c) lack of support for rs2251219, a SNP identified in a meta-analysis of affective disorder studies (P=0.51). We estimate that sample sizes 1.8- to 2.4-fold greater are needed for association studies of MDD compared with those for schizophrenia to detect variants that explain the same proportion of total variance in liability. Larger study cohorts characterized for genetic and environmental risk factors accumulated prospectively are likely to be needed to dissect more fully the etiology of MDD.
Resumo:
OBJECTIVES To identify common genetic variants that predispose to caffeine-induced insomnia and to test whether genes whose expression changes in the presence of caffeine are enriched for association with caffeine-induced insomnia. DESIGN A hypothesis-free, genome-wide association study. SETTING Community-based sample of Australian twins from the Australian Twin Registry. PARTICIPANTS After removal of individuals who said that they do not drink coffee, a total of 2,402 individuals from 1,470 families in the Australian Twin Registry provided both phenotype and genotype information. MEASUREMENTS AND RESULTS A dichotomized scale based on whether participants reported ever or never experiencing caffeine-induced insomnia. A factor score based on responses to a number of questions regarding normal sleep habits was included as a covariate in the analysis. More than 2 million common single nucleotide polymorphisms (SNPs) were tested for association with caffeine-induced insomnia. No SNPs reached the genome-wide significance threshold. In the analysis that did not include the insomnia factor score as a covariate, the most significant SNP identified was an intronic SNP in the PRIMA1 gene (P = 1.4 x 10(-)(6), odds ratio = 0.68 [0.53 - 0.89]). An intergenic SNP near the GBP4 gene on chromosome 1 was the most significant upon inclusion of the insomnia factor score into the model (P = 1.9 x 10(-)(6), odds ratio = 0.70 [0.62 - 0.78]). A previously identified association with a polymorphism in the ADORA2A gene was replicated. CONCLUSIONS Several genes have been identified in the study as potentially influencing caffeine-induced insomnia. They will require replication in another sample. The results may have implications for understanding the biologic mechanisms underlying insomnia.
Resumo:
The male-to-female sex ratio at birth is constant across world populations with an average of 1.06 (106 male to 100 female live births) for populations of European descent. The sex ratio is considered to be affected by numerous biological and environmental factors and to have a heritable component. The aim of this study was to investigate the presence of common allele modest effects at autosomal and chromosome X variants that could explain the observed sex ratio at birth. We conducted a large-scale genome-wide association scan (GWAS) meta-analysis across 51 studies, comprising overall 114 863 individuals (61 094 women and 53 769 men) of European ancestry and 2 623 828 common (minor allele frequency >0.05) single-nucleotide polymorphisms (SNPs). Allele frequencies were compared between men and women for directly-typed and imputed variants within each study. Forward-time simulations for unlinked, neutral, autosomal, common loci were performed under the demographic model for European populations with a fixed sex ratio and a random mating scheme to assess the probability of detecting significant allele frequency differences. We do not detect any genome-wide significant (P < 5 x 10(-8)) common SNP differences between men and women in this well-powered meta-analysis. The simulated data provided results entirely consistent with these findings. This large-scale investigation across ~115 000 individuals shows no detectable contribution from common genetic variants to the observed skew in the sex ratio. The absence of sex-specific differences is useful in guiding genetic association study design, for example when using mixed controls for sex-biased traits.
Resumo:
Population structure, including population stratification and cryptic relatedness, can cause spurious associations in genome-wide association studies (GWAS). Usually, the scaled median or mean test statistic for association calculated from multiple single-nucleotide-polymorphisms across the genome is used to assess such effects, and 'genomic control' can be applied subsequently to adjust test statistics at individual loci by a genomic inflation factor. Published GWAS have clearly shown that there are many loci underlying genetic variation for a wide range of complex diseases and traits, implying that a substantial proportion of the genome should show inflation of the test statistic. Here, we show by theory, simulation and analysis of data that in the absence of population structure and other technical artefacts, but in the presence of polygenic inheritance, substantial genomic inflation is expected. Its magnitude depends on sample size, heritability, linkage disequilibrium structure and the number of causal variants. Our predictions are consistent with empirical observations on height in independent samples of ~4000 and ~133,000 individuals.
Resumo:
OBJECTIVE To refine a previously reported linkage peak for endometriosis on chromosome 10q26, and conduct follow-up analyses and a fine-mapping association study across the region to identify new candidate genes for endometriosis. DESIGN Case-control study. SETTING Academic research. PATIENT(S) Cases=3,223 women with surgically confirmed endometriosis; controls=1,190 women without endometriosis and 7,060 population samples. INTERVENTION(S) Analysis of 11,984 single nucleotide polymorphisms on chromosome 10. MAIN OUTCOME MEASURE(S) Allele frequency differences between cases and controls. RESULT(S) Linkage analyses on families grouped by endometriosis symptoms (primarily subfertility) provided increased evidence for linkage (logarithm of odds score=3.62) near a previously reported linkage peak. Three independent association signals were found at 96.59 Mb (rs11592737), 105.63 Mb (rs1253130), and 124.25 Mb (rs2250804). Analyses including only samples from linkage families supported the association at all three regions. However, only rs11592737 in the cytochrome P450 subfamily C (CYP2C19) gene was replicated in an independent sample of 2,079 cases and 7,060 population controls. CONCLUSION(S) The role of the CYP2C19 gene in conferring risk for endometriosis warrants further investigation.
Resumo:
BACKGROUND Correlations between Educational Attainment (EA) and measures of cognitive performance are as high as 0.8. This makes EA an attractive alternative phenotype for studies wishing to map genes affecting cognition due to the ease of collecting EA data compared to other cognitive phenotypes such as IQ. METHODOLOGY In an Australian family sample of 9538 individuals we performed a genome-wide association scan (GWAS) using the imputed genotypes of approximately 2.4 million single nucleotide polymorphisms (SNP) for a 6-point scale measure of EA. Top hits were checked for replication in an independent sample of 968 individuals. A gene-based test of association was then applied to the GWAS results. Additionally we performed prediction analyses using the GWAS results from our discovery sample to assess the percentage of EA and full scale IQ variance explained by the predicted scores. RESULTS The best SNP fell short of having a genome-wide significant p-value (p = 9.77x10(-7)). In our independent replication sample six SNPs among the top 50 hits pruned for linkage disequilibrium (r(2)<0.8) had a p-value<0.05 but only one of these SNPs survived correction for multiple testing--rs7106258 (p = 9.7*10(-4)) located in an intergenic region of chromosome 11q14.1. The gene based test results were non-significant and our prediction analyses show that the predicted scores explained little variance in EA in our replication sample. CONCLUSION While we have identified a polymorphism chromosome 11q14.1 associated with EA, further replication is warranted. Overall, the absence of genome-wide significant p-values in our large discovery sample confirmed the high polygenic architecture of EA. Only the assembly of large samples or meta-analytic efforts will be able to assess the implication of common DNA polymorphisms in the etiology of EA.
Resumo:
Genome-wide association studies followed by replication provide a powerful approach to map genetic risk factors for asthma. We sought to search for new variants associated with asthma and attempt to replicate the association with four loci reported previously (ORMDL3, PDE4D, DENND1B and IL1RL1). Genome-wide association analyses of individual single nucleotide polymorphisms (SNPs), rare copy number variants (CNVs) and overall CNV burden were carried out in 986 asthma cases and 1846 asthma-free controls from Australia. The most-associated locus in the SNP analysis was ORMDL3 (rs6503525, P = 4.8 x 10(-)(7)). Five other loci were associated with P < 10(-)(5), most notably the chemokine CXC motif ligand 14 (CXCL14) gene (rs31263, P = 7.8 x 10(-)(6)). We found no evidence for association with the specific risk variants reported recently for PDE4D, DENND1B and ILR1L1. However, a variant in IL1RL1 that is in low linkage disequilibrium with that reported previously was associated with asthma risk after accounting for all variants tested (rs10197862, gene wide P = 0.01). This association replicated convincingly in an independent cohort (P = 2.4 x 10(-)(4)). A 300-kb deletion on chromosome 17q21 was associated with asthma risk, but this did not reach experiment-wide significance. Asthma cases and controls had comparable CNV rates, length and number of genes affected by deletions or duplications. In conclusion, we confirm the association between asthma risk and variants in ORMDL3 and identify a novel risk variant in IL1RL1. Follow-up of the 17q21 deletion in larger cohorts is warranted.
Resumo:
Serum butyrylcholinesterase (BCHE) activity is associated with obesity, blood pressure and biomarkers of cardiovascular and diabetes risk. We have conducted a genome-wide association scan to discover genetic variants affecting BCHE activity, and to clarify whether the associations between BCHE activity and cardiometabolic risk factors are caused by variation in BCHE or whether BCHE variation is secondary to the metabolic abnormalities. We measured serum BCHE in adolescents and adults from three cohorts of Australian twin and family studies. The genotypes from approximately 2.4 million single-nucleotide polymorphisms (SNPs) were available in 8791 participants with BCHE measurements. We detected significant associations with BCHE activity at three independent groups of SNPs at the BCHE locus (P = 5.8 x 10(-262), 7.8 x 10(-47), 2.9 x 10(-12)) and at four other loci: RNPEP (P = 9.4 x 10(-16)), RAPH1-ABI2 (P = 4.1 x 10(-18)), UGT1A1 (P = 4.0 x 10(-8)) and an intergenic region on chromosome 8 (P = 1.4 x 10(-8)). These loci affecting BCHE activity were not associated with metabolic risk factors. On the other hand, SNPs in genes previously associated with metabolic risk had effects on BCHE activity more often than can be explained by chance. In particular, SNPs within FTO and GCKR were associated with BCHE activity, but their effects were partly mediated by body mass index and triglycerides, respectively. We conclude that variation in BCHE activity is due to multiple variants across the spectrum from uncommon/large effect to common/small effect, and partly results from (rather than causes) metabolic abnormalities.
Resumo:
The impact of erroneous genotypes having passed standard quality control (QC) can be severe in genome-wide association studies, genotype imputation, and estimation of heritability and prediction of genetic risk based on single nucleotide polymorphisms (SNP). To detect such genotyping errors, a simple two-locus QC method, based on the difference in test statistic of association between single SNPs and pairs of SNPs, was developed and applied. The proposed approach could detect many problematic SNPs with statistical significance even when standard single SNP QC analyses fail to detect them in real data. Depending on the data set used, the number of erroneous SNPs that were not filtered out by standard single SNP QC but detected by the proposed approach varied from a few hundred to thousands. Using simulated data, it was shown that the proposed method was powerful and performed better than other tested existing methods. The power of the proposed approach to detect erroneous genotypes was approximately 80% for a 3% error rate per SNP. This novel QC approach is easy to implement and computationally efficient, and can lead to a better quality of genotypes for subsequent genotype-phenotype investigations.
Resumo:
OBJECTIVE: The study of ethnically homogeneous populations may help to identify schizophrenia risk loci. The authors conducted a genomewide linkage scan for schizophrenia in an Indian population. METHOD: Participants were 441 individuals (262 affected probands and siblings) who were recruited primarily from one ethnically homogeneous group, the Tamil Brahmin caste, although individuals from other geographically proximal castes also participated. Genotyping of 124 affected sibling pair pedigrees was performed with 402 short tandem repeat polymorphisms. Linkage analyses were conducted using nonparametric exponential LOD (logarithm of the odds ratio for linkage) scores and parametric heterogeneity LOD scores. Parametric heterogeneity scores were calculated using simple dominant and recessive models, correcting for multiple statistics. The data were examined for evidence of consanguinity. Genomewide significance levels were determined using 10,000 gene dropping simulations. RESULTS: These findings revealed genomewide significant linkage to chromosome 1p31.1, through the use of both exponential and heterogeneity LOD scores, incorporating correction for multiple statistics and mild consanguinity. The estimated sibling recurrence risk associated with this putative locus was 1.95. Analysis for heterogeneity LOD scores also detected suggestive linkage to chromosomes 13q22.1 and 16q12.2. Using 117 tag single nucleotide polymorphisms (SNPs), family-based association analyses of phosphodiesterase 4B (PDE4B), the closest schizophrenia candidate gene, detected no convincing evidence of association, suggesting that the chromosome 1 peak represents a novel risk locus. CONCLUSIONS: This is the first study-to the authors' knowledge-to report significant linkage of schizophrenia to chromosome 1p31.1. Further investigation of this chromosome region in diverse populations is warranted to identify underlying sequence variants.
Resumo:
Endometriosis is a complex disease involving multiple susceptibility genes and environmental factors. Our previous studies on endometriosis identified a region of significant linkage on chromosome 10q. Two biological candidate genes (CYP17A1 and IFIT1) located on chromosome 10q, have previously been implicated in endometriosis and/or uterine function. We hypothesized that variation in CYP17A1 and/or IFIT1 could contribute to the risk of endometriosis and may account for some of the linkage signal on chromosome 10q. We genotyped 17 single nucleotide polymorphisms (SNPs) in the CYP17A1 and IFIT1 genes including SNP rs743572 previously associated with endometriosis in 768 endometriosis cases and 768 unrelated controls. We found no evidence for association between endometriosis and individual SNPs or SNP haplotypes in CYP17A1 and IFIT1. Common variation in these genes does not appear to be a major contributor to endometriosis susceptibility in our Australian sample.