179 resultados para query rewriting
Resumo:
Determining similarity between business process models has recently gained interest in the business process management community. So far similarity was addressed separately either at semantic or structural aspect of process models. Also, most of the contributions that measure similarity of process models assume an ideal case when process models are enriched with semantics - a description of meaning of process model elements. However, in real life this results in a heavy human effort consuming pre-processing phase which is often not feasible. In this paper we propose an automated approach for querying a business process model repository for structurally and semantically relevant models. Similar to the search on the Internet, a user formulates a BPMN-Q query and as a result receives a list of process models ordered by relevance to the query. We provide a business process model search engine implementation for evaluation of the proposed approach.
Resumo:
Copyright, it is commonly said, matters in society because it encourages the production of socially beneficial, culturally significant expressive content. Our focus on copyright's recent history, however, blinds us to the social information practices that have always existed. In this Article, we examine these social information practices, and query copyright's role within them. We posit a functional model of what is necessary for creative content to move from creator to user. These are the functions dealing with the creation, selection, production, dissemination, promotion, sale, and use of expressive content. We demonstrate how centralized commercial control of information content has been the driving force behind copyright's expansion. All of the functions that copyright industries once controlled, however, are undergoing revolutionary decentralization and disintermediation. Different aspects of information technology, notably the digitization of information, widespread computer ownership, the rise of the Internet, and the development of social software, threaten the viability and desirability of centralized control over every one of the content functions. These functions are increasingly being performed by individuals and disaggregated groups. This raises an issue for copyright as the main regulatory force in information practices: copyright assumes a central control requirement that no longer applies for the development of expressive content. We examine the normative implications of this shift for our information policy in this new post-copyright era. Most notably, we conclude that copyright law needs to be adjusted in order to recognize the opportunity and desirability of decentralized content, and the expanded marketplace of ideas it promises.
Resumo:
We study two problems of online learning under restricted information access. In the first problem, prediction with limited advice, we consider a game of prediction with expert advice, where on each round of the game we query the advice of a subset of M out of N experts. We present an algorithm that achieves O(√(N/M)TlnN ) regret on T rounds of this game. The second problem, the multiarmed bandit with paid observations, is a variant of the adversarial N-armed bandit game, where on round t of the game we can observe the reward of any number of arms, but each observation has a cost c. We present an algorithm that achieves O((cNlnN) 1/3 T2/3+√TlnN ) regret on T rounds of this game in the worst case. Furthermore, we present a number of refinements that treat arm- and time-dependent observation costs and achieve lower regret under benign conditions. We present lower bounds that show that, apart from the logarithmic factors, the worst-case regret bounds cannot be improved.
Resumo:
Security models for two-party authenticated key exchange (AKE) protocols have developed over time to provide security even when the adversary learns certain secret keys. In this work, we advance the modelling of AKE protocols by considering more granular, continuous leakage of long-term secrets of protocol participants: the adversary can adaptively request arbitrary leakage of long-term secrets even after the test session is activated, with limits on the amount of leakage per query but no bounds on the total leakage. We present a security model supporting continuous leakage even when the adversary learns certain ephemeral secrets or session keys, and give a generic construction of a two-pass leakage-resilient key exchange protocol that is secure in the model; our protocol achieves continuous, after-the-fact leakage resilience with not much more cost than a previous protocol with only bounded, non-after-the-fact leakage.
Resumo:
We identify relation completion (RC) as one recurring problem that is central to the success of novel big data applications such as Entity Reconstruction and Data Enrichment. Given a semantic relation, RC attempts at linking entity pairs between two entity lists under the relation. To accomplish the RC goals, we propose to formulate search queries for each query entity α based on some auxiliary information, so that to detect its target entity β from the set of retrieved documents. For instance, a pattern-based method (PaRE) uses extracted patterns as the auxiliary information in formulating search queries. However, high-quality patterns may decrease the probability of finding suitable target entities. As an alternative, we propose CoRE method that uses context terms learned surrounding the expression of a relation as the auxiliary information in formulating queries. The experimental results based on several real-world web data collections demonstrate that CoRE reaches a much higher accuracy than PaRE for the purpose of RC.
Resumo:
Traditional nearest points methods use all the samples in an image set to construct a single convex or affine hull model for classification. However, strong artificial features and noisy data may be generated from combinations of training samples when significant intra-class variations and/or noise occur in the image set. Existing multi-model approaches extract local models by clustering each image set individually only once, with fixed clusters used for matching with various image sets. This may not be optimal for discrimination, as undesirable environmental conditions (eg. illumination and pose variations) may result in the two closest clusters representing different characteristics of an object (eg. frontal face being compared to non-frontal face). To address the above problem, we propose a novel approach to enhance nearest points based methods by integrating affine/convex hull classification with an adapted multi-model approach. We first extract multiple local convex hulls from a query image set via maximum margin clustering to diminish the artificial variations and constrain the noise in local convex hulls. We then propose adaptive reference clustering (ARC) to constrain the clustering of each gallery image set by forcing the clusters to have resemblance to the clusters in the query image set. By applying ARC, noisy clusters in the query set can be discarded. Experiments on Honda, MoBo and ETH-80 datasets show that the proposed method outperforms single model approaches and other recent techniques, such as Sparse Approximated Nearest Points, Mutual Subspace Method and Manifold Discriminant Analysis.
Resumo:
Existing multi-model approaches for image set classification extract local models by clustering each image set individually only once, with fixed clusters used for matching with other image sets. However, this may result in the two closest clusters to represent different characteristics of an object, due to different undesirable environmental conditions (such as variations in illumination and pose). To address this problem, we propose to constrain the clustering of each query image set by forcing the clusters to have resemblance to the clusters in the gallery image sets. We first define a Frobenius norm distance between subspaces over Grassmann manifolds based on reconstruction error. We then extract local linear subspaces from a gallery image set via sparse representation. For each local linear subspace, we adaptively construct the corresponding closest subspace from the samples of a probe image set by joint sparse representation. We show that by minimising the sparse representation reconstruction error, we approach the nearest point on a Grassmann manifold. Experiments on Honda, ETH-80 and Cambridge-Gesture datasets show that the proposed method consistently outperforms several other recent techniques, such as Affine Hull based Image Set Distance (AHISD), Sparse Approximated Nearest Points (SANP) and Manifold Discriminant Analysis (MDA).
Resumo:
We present a study to understand the effect that negated terms (e.g., "no fever") and family history (e.g., "family history of diabetes") have on searching clinical records. Our analysis is aimed at devising the most effective means of handling negation and family history. In doing so, we explicitly represent a clinical record according to its different content types: negated, family history and normal content; the retrieval model weights each of these separately. Empirical evaluation shows that overall the presence of negation harms retrieval effectiveness while family history has little effect. We show negation is best handled by weighting negated content (rather than the common practise of removing or replacing it). However, we also show that many queries benefit from the inclusion of negated content and that negation is optimally handled on a per-query basis. Additional evaluation shows that adaptive handing of negated and family history content can have significant benefits.
Resumo:
The top-k retrieval problem aims to find the optimal set of k documents from a number of relevant documents given the user’s query. The key issue is to balance the relevance and diversity of the top-k search results. In this paper, we address this problem using Facility Location Analysis taken from Operations Research, where the locations of facilities are optimally chosen according to some criteria. We show how this analysis technique is a generalization of state-of-the-art retrieval models for diversification (such as the Modern Portfolio Theory for Information Retrieval), which treat the top-k search results like “obnoxious facilities” that should be dispersed as far as possible from each other. However, Facility Location Analysis suggests that the top-k search results could be treated like “desirable facilities” to be placed as close as possible to their customers. This leads to a new top-k retrieval model where the best representatives of the relevant documents are selected. In a series of experiments conducted on two TREC diversity collections, we show that significant improvements can be made over the current state-of-the-art through this alternative treatment of the top-k retrieval problem.
Resumo:
In the TREC Web Diversity track, novelty-biased cumulative gain (α-NDCG) is one of the official measures to assess retrieval performance of IR systems. The measure is characterised by a parameter, α, the effect of which has not been thoroughly investigated. We find that common settings of α, i.e. α=0.5, may prevent the measure from behaving as desired when evaluating result diversification. This is because it excessively penalises systems that cover many intents while it rewards those that redundantly cover only few intents. This issue is crucial since it highly influences systems at top ranks. We revisit our previously proposed threshold, suggesting α be set on a query-basis. The intuitiveness of the measure is then studied by examining actual rankings from TREC 09-10 Web track submissions. By varying α according to our query-based threshold, the discriminative power of α-NDCG is not harmed and in fact, our approach improves α-NDCG's robustness. Experimental results show that the threshold for α can turn the measure to be more intuitive than using its common settings.
Resumo:
In this paper, we consider the problem of document ranking in a non-traditional retrieval task, called subtopic retrieval. This task involves promoting relevant documents that cover many subtopics of a query at early ranks, providing thus diversity within the ranking. In the past years, several approaches have been proposed to diversify retrieval results. These approaches can be classified into two main paradigms, depending upon how the ranks of documents are revised for promoting diversity. In the first approach subtopic diversification is achieved implicitly, by choosing documents that are different from each other, while in the second approach this is done explicitly, by estimating the subtopics covered by documents. Within this context, we compare methods belonging to the two paradigms. Furthermore, we investigate possible strategies for integrating the two paradigms with the aim of formulating a new ranking method for subtopic retrieval. We conduct a number of experiments to empirically validate and contrast the state-of-the-art approaches as well as instantiations of our integration approach. The results show that the integration approach outperforms state-of-the-art strategies with respect to a number of measures.
Resumo:
The location of previously unseen and unregistered individuals in complex camera networks from semantic descriptions is a time consuming and often inaccurate process carried out by human operators, or security staff on the ground. To promote the development and evaluation of automated semantic description based localisation systems, we present a new, publicly available, unconstrained 110 sequence database, collected from 6 stationary cameras. Each sequence contains detailed semantic information for a single search subject who appears in the clip (gender, age, height, build, hair and skin colour, clothing type, texture and colour), and between 21 and 290 frames for each clip are annotated with the target subject location (over 11,000 frames are annotated in total). A novel approach for localising a person given a semantic query is also proposed and demonstrated on this database. The proposed approach incorporates clothing colour and type (for clothing worn below the waist), as well as height and build to detect people. A method to assess the quality of candidate regions, as well as a symmetry driven approach to aid in modelling clothing on the lower half of the body, is proposed within this approach. An evaluation on the proposed dataset shows that a relative improvement in localisation accuracy of up to 21 is achieved over the baseline technique.
Resumo:
During the early design stages of construction projects, accurate and timely cost feedback is critical to design decision making. This is particularly challenging for cost estimators, as they must quickly and accurately estimate the cost of the building when the design is still incomplete and evolving. State-of-the-art software tools typically use a rule-based approach to generate detailed quantities from the design details present in a building model and relate them to the cost items in a cost estimating database. In this paper, we propose a generic approach for creating and maintaining a cost estimate using flexible mappings between a building model and a cost estimate. The approach uses queries on the building design that are used to populate views, and each view is then associated with one or more cost items. The benefit of this approach is that the flexibility of modern query languages allows the estimator to encode a broad variety of relationships between the design and estimate. It also avoids the use of a common standard to which both designers and estimators must conform, allowing the estimator added flexibility and functionality to their work.
Resumo:
This paper reports on the 2nd ShARe/CLEFeHealth evaluation lab which continues our evaluation resource building activities for the medical domain. In this lab we focus on patients' information needs as opposed to the more common campaign focus of the specialised information needs of physicians and other healthcare workers. The usage scenario of the lab is to ease patients and next-of-kins' ease in understanding eHealth information, in particular clinical reports. The 1st ShARe/CLEFeHealth evaluation lab was held in 2013. This lab consisted of three tasks. Task 1 focused on named entity recognition and normalization of disorders; Task 2 on normalization of acronyms/abbreviations; and Task 3 on information retrieval to address questions patients may have when reading clinical reports. This year's lab introduces a new challenge in Task 1 on visual-interactive search and exploration of eHealth data. Its aim is to help patients (or their next-of-kin) in readability issues related to their hospital discharge documents and related information search on the Internet. Task 2 then continues the information extraction work of the 2013 lab, specifically focusing on disorder attribute identification and normalization from clinical text. Finally, this year's Task 3 further extends the 2013 information retrieval task, by cleaning the 2013 document collection and introducing a new query generation method and multilingual queries. De-identified clinical reports used by the three tasks were from US intensive care and originated from the MIMIC II database. Other text documents for Tasks 1 and 3 were from the Internet and originated from the Khresmoi project. Task 2 annotations originated from the ShARe annotations. For Tasks 1 and 3, new annotations, queries, and relevance assessments were created. 50, 79, and 91 people registered their interest in Tasks 1, 2, and 3, respectively. 24 unique teams participated with 1, 10, and 14 teams in Tasks 1, 2 and 3, respectively. The teams were from Africa, Asia, Canada, Europe, and North America. The Task 1 submission, reviewed by 5 expert peers, related to the task evaluation category of Effective use of interaction and targeted the needs of both expert and novice users. The best system had an Accuracy of 0.868 in Task 2a, an F1-score of 0.576 in Task 2b, and Precision at 10 (P@10) of 0.756 in Task 3. The results demonstrate the substantial community interest and capabilities of these systems in making clinical reports easier to understand for patients. The organisers have made data and tools available for future research and development.
Resumo:
This paper presents our system to address the CogALex-IV 2014 shared task of identifying a single word most semantically related to a group of 5 words (queries). Our system uses an implementation of a neural language model and identifies the answer word by finding the most semantically similar word representation to the sum of the query representations. It is a fully unsupervised system which learns on around 20% of the UkWaC corpus. It correctly identifies 85 exact correct targets out of 2,000 queries, 285 approximate targets in lists of 5 suggestions.