160 resultados para polyterpenol films
Resumo:
Nanoporous Nb2O5 has been previously demonstrated to be a viable electrochromic material with strong intercalation characteristics. Despite showing such promising properties, its potential for optical gas sensing applications, which involves the production of ionic species such as H+, has yet to be explored. Nanoporous Nb2O5 can accommodate a large amount of H+ ions in a process that results in an energy bandgap change of the material, which induces an optical response. Here, we demonstrate the optical hydrogen gas (H¬2) sensing capability of nanoporous anodic Nb2O5 with a large surface-to-volume ratio prepared via a high temperature anodization method. The large active surface area of the film provides enhanced pathways for efficient hydrogen adsorption and dissociation, which are facilitated by a thin layer of Pt catalyst. We show that the process of H2 sensing causes optical modulations that are investigated in terms of response magnitudes and dynamics. The optical modulations induced by the intercalation process and sensing properties of nanoporous anodic Nb2O5 shown in this work can potentially be used for future optical gas sensing systems.
Resumo:
Summary This manual was developed to guide a move towards common standards for undertaking and reporting research microscopy for malaria parasite detection, identification and quantification. It contains procedures based on agreed quality assurance standards for research malaria microscopy defined at a consultation of: TDR, the Special Programme for Research and Training in Tropical Diseases; the Worldwide Antimalarial Resistance Network (WWARN), United Kingdom; the Foundation for Innovative New Diagnostics (FIND), Switzerland; the Centers for Disease Control and Prevention (CDC), USA; the Kenya Medical Research Institute (KEMRI) and later expanded to include Amref Health Africa (Kenya); the Eijkman-Oxford Clinical Research Unit (EOCRU), Indonesia; Institut Pasteur du Cambodge (IPC); Institut de recherche pour le Développement (IRD), Senegal; the Global Good and Intellectual Ventures Laboratory (GG-IVL), USA; the Mahidol-Oxford Tropical Medicine Research Unit (MORU), Thailand; Queensland University of Technology (QUT), Australia, and the Shoklo Malaria Research Unit (SMRU), Thailand. These collaborating institutions commit to adhering to these standards in published research studies. It is hoped that they will form a solid basis for the wider adoption of standardized reference microscopy protocols for malaria research.
Resumo:
Toughness is the ability of a material to deform plastically and to absorb energy before fracture. The first of its kind, this book covers the most recent developments in the toughening of hard coatings and the methodologies for measuring the toughness of thin films and coatings. The book looks at the present status of toughness for coatings and discusses high-temperature nanocomposite coatings, porous thin films, laser treated surface layers, cracking resistance, indentation techniques, sliding contact fracture, IPN hybrid composites for protection, and adhesion strength.
Resumo:
A unique bias-dependent phenomenon in CH3NH3PbI3−xClx based planar perovskite solar cells has been demonstrated, in which the photovoltaic parameters derived from the current–voltage (I–V) curves are highly dependent on the initial positive bias of the I–V measurement. In FTO/CH3NH3PbI3−xClx/Au devices, the open-circuit voltage and short-circuit current increased by ca. 337.5% and 281.9% respectively, by simply increasing the initial bias from 0.5 V to 2.5 V.
Resumo:
Organic solvents are commonly used in ink precursors of Cu2ZnSnS4 (CZTS) nanocrystals to make thin films for applications such as solar cells. However, the traces of carbon residual left behind by the organic solvents after high-temperature annealing is generally considered to restrict the growth of nanocrystals to form large grains. This work reported the first systematic study on the influence of carbon content of organic solvents on the grain growth of CZTS nanomaterial during high temperature sulfurization annealing. Solvents with carbon atom per molecule varying from 3 to 10 were used to made ink of CZTS nanocrystals for thin film deposition. It has been found that, after high temperature sulfurization annealing, a bilayer structure was formed in the CZTS film using organic solvent containing 3 carbon atoms per solvent molecule based on glycerol and 1,3-propanediol. The top layer consisted of closelypacked large grains and the bottom layer was made of as-synthesized nanoparticles. In contrast, the CZTS film made with the solvent molecule with more carbon atoms including 1,5-pentanediol (5 carbon atoms) and 1,7-heptanediol (7 carbon atoms) consisted of nanoparticles embedded with large crystals. It is believed that the carbon residues left behind by the organic solvents affected the necking of CZTS nanocrystals to form large grains through influencing the surface property of nanocrystals. Furthermore, it has also been observed that the solvent affected the thickness of MoS2 layer which was formed between CZTS and Mo substrate. A thinner MoS2 film (50 nm) was obtained with the slurry using carbon-rich terpineol as solvent whereas the thickest MoS2 (350 nm) was obtained with the film made from 1,3-propanediol based solvent. The evaluation of the photoactivity of the CZTS thin films has demonstrated that a higher photocurrent was generated with the film containing more large grains.
Resumo:
Graphene films were produced by chemical vapor deposition (CVD) of pyridine on copper substrates. Pyridine-CVD is expected to lead to doped graphene by the insertion of nitrogen atoms in the growing sp2 carbon lattice, possibly improving the properties of graphene as a transparent conductive film. We here report on the influence that the CVD parameters (i.e., temperature and gas flow) have on the morphology, transmittance, and electrical conductivity of the graphene films grown with pyridine. A temperature range between 930 and 1070 °C was explored and the results were compared to those of pristine graphene grown by ethanol-CVD under the same process conditions. The films were characterized by atomic force microscopy, Raman and X-ray photoemission spectroscopy. The optical transmittance and electrical conductivity of the films were measured to evaluate their performance as transparent conductive electrodes. Graphene films grown by pyridine reached an electrical conductivity of 14.3 × 105 S/m. Such a high conductivity seems to be associated with the electronic doping induced by substitutional nitrogen atoms. In particular, at 930 °C the nitrogen/carbon ratio of pyridine-grown graphene reaches 3%, and its electrical conductivity is 40% higher than that of pristine graphene grown from ethanol-CVD.
Resumo:
Plasma polymerized c-terpinene (pp2GT) thin films are fabricated using RF plasma polymerization. MIM structures are fabricated and using the capacitive structures dielectric properties of the material is studied. The dielectric constant values are found to be in good agreement with those determined from ellipsometric data. At a frequency of 100 kHz, the dielectric constant varies with RF deposition power, from 3.69 (10 W) to 3.24 (75 W). The current density–voltage (J2V) characteristics of pp–GT thin films are investigated as a function of RF deposition power at room temperature to determine the resistivity and DC conduction mechanism of the films. At higher applied voltage region, Schottky conduction is the dominant DC conduction mechanism. The capacitance and the loss tangent are found to be frequency dependent. The conductivity of the pp2GT thin films is found to decrease from 1.39 3 10212 S/cm (10 W) to 1.02 3 10213 S/cm (75 W) and attributed to the change in the chemical composition and structure of the polymer. The breakdown field for pp–GT thin films increases from 1.48 MV/cm (10 W) to 2 MV/cm (75 W). A single broad relaxation peak is observed indicating the contribution of multiple relaxations to the dielectric response for temperature dependent J2V. The distribution of these relaxation times is determined through regularization methods. VC 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 42318.
Resumo:
Understanding the polymerization mechanism of a precursor is indispensable to enhance the requisite material properties. In situ mass spectroscopy and X-ray photoelectron spectroscopy is used in this study to understand the RF plasma polymerization of γ-terpinene. High-resolution mass spectra positive ion mass spectrometry data of the plasma phase demonstrates the presence of oligomeric species of the type [M+H]+ and [2M+H]+, where M represents a unit of the starting material. In addition, there is abundant fragmented species, with most dominant being [M+] (136 m/z), C10H13+ (133 m/z), C9H11+ (119 m/z), and C7H9+ (93 m/z). The results reported in this manuscript enables to comprehend the relationship between the degree of incorporation of oxygen and the rate of deposition with the input RF power.
Resumo:
Low pressure radio frequency plasma-assisted deposition of 1-isopropyl-4-methyl-1,4-cyclohexadiene thin films was investigated for different polymerization conditions. Transparent, environmentally stable and flexible, these organic films are promising candidates for organic photovoltaics (OPV) and flexible electronics applications, where they can be used as encapsulating coatings and insulating interlayers. The effect of deposition RF power on optical properties of the films was limited, with all films being optically transparent, with refractive indices in a range of 1.57–1.58 at 500 nm. The optical band gap (Eg) of ~3 eV fell into the insulating Eg region, decreasing for films fabricated at higher RF power. Independent of deposition conditions, the surfaces were smooth and defect-free, with uniformly distributed morphological features and average roughness between 0.30 nm (at 10 W) and 0.21 nm (at 75 W). Films fabricated at higher deposition power displayed enhanced resistance to delamination and wear, and improved hardness, from 0.40 GPa for 10 W to 0.58 GPa for 75 W at a load of 700 μN. From an application perspective, it is therefore possible to tune the mechanical and morphological properties of these films without compromising their optical transparency or insulating property.
Resumo:
Plasma polymerisation is an effective tool for fabrication of thin films from volatile organic monomers. RF plasma assisted deposition is used for one-step, chemical-free polymerisation of nonsynthetic materials derived directly from agricultural produces. By varying the deposition parameters, especially the input RF power, the film properties can be tailored for a range of uses, including electronics or biomedical applications. The fabricated thin films are optically transparent with refractive index close to that of glass. Given the diversity of essential oils, this paper compares the chemical and physical properties of thin films fabricated from several commercially exploited essential oils and their components. It is interesting to note that some of the properties can be tailored for various applications even though the chemical structure of the derived polymer is very similar. The obtained material properties also show that the synthesised materials are suitable as encapsulating layers for biodegradable implantable metals.
Resumo:
Investigations on the wetting, solubility and chemical composition of plasma polymer thin films provide an insight into the feasibility of implementing these polymeric materials in organic electronics, particularly where wet solution processing is involved. In this study, thin films were prepared from 1-isopropyl-4-methyl-1,4-cyclohexadiene (γ-Terpinene) using radio frequency (RF) plasma polymerization. FTIR showed the polymers to be structurally dissimilar to the original monomer and highly cross-linked, where the loss of original functional groups and the degree of cross-linking increased with deposition power. The polymer surfaces were hydrocarbon-rich, with oxygen present in the form of O–H and C=O functional groups. The oxygen content decreased with deposition power, with films becoming more hydrophobic and, thus, less wettable. The advancing and receding contact angles were investigated, and the water advancing contact angle was found to increase from 63.14° to 73.53° for thin films prepared with an RF power of 10 W to 75 W. The wetting envelopes for the surfaces were constructed to enable the prediction of the surfaces’ wettability for other solvents. The effect of roughness on the wetting behaviour of the films was insignificant. The polymers were determined to resist solubilization in solvents commonly used in the deposition of organic semiconducting layers, including chloroform and chlorobenzene, with higher stability observed in films fabricated at higher RF power.
Resumo:
The significant advancement and growth of organic and flexible electronic applications demand materials with enhanced properties. This paper reports the fabrication of a nonsynthetic polymer thin film using radio frequency plasma polymerisation of 3,7-dimethyl-1,6-octadien-3-ol. The fabricated optically transparent thin film exhibited refractive index of approximately 1.55 at 500 nm and rate of deposition was estimated to be 40 nm/min. The surface morphology and chemical properties of the thin films were also reported in this paper. The optical band gap of the material is around 2.8 eV. The force of adhesion and Young's modulus of the linalool polymer thin films were measured using force-displacement curves obtained from a scanning probe microscope. The friction coefficient of linalool polymer thin films was measured using the nanoscratch test. The calculated Young's modulus increased linearly with increase in input power while the friction coefficient decreased.
Resumo:
By using electric-field-induced optical second-harmonic generation (EFISHG) measurement, we analyzed hysteresis behavior of capacitance-voltage (C-V) characteristics of IZO/polyterpenol (PT)/C₆₀/pentacene/Au diodes, where PT layer is actively working as a hole-transport electron-blocking layer. The EFISHG measurement verified the presence of interface accumulated charges in the diodes, and showed that a space charge electric field from accumulated excess electrons (holes) that remain at the PT/C₆₀ (C₆₀/pentacene) interface is responsible for the hysteresis loop observed in the C-V characteristics.
Resumo:
The nanometer scale surface topography of a solid substrate is known to influence the extent of bacterial attachment and their subsequent proliferation to form biofilms. As an extension of our previous work on the development of a novel organic polymer coating for the prevention of growth of medically significant bacteria on three-dimensional solid surfaces, this study examines the effect of surface coating on the adhesion and proliferation tendencies of Staphylococcus aureus and compares to those previously investigated tendencies of Pseudomonas aeruginosa on similar coatings. Radio frequency plasma enhanced chemical vapor deposition was used to coat the surface of the substrate with thin film of terpinen-4-ol, a constituent of tea-tree oil known to inhibit the growth of a broad range of bacteria. The presence of the coating decreased the substrate surface roughness from approximately 2.1 nm to 0.4 nm. Similar to P. aeruginosa, S. aureus presented notably different patterns of attachment in response to the presence of the surface film, where the amount of attachment, extracellular polymeric substance production, and cell proliferation on the coated surface was found to be greatly reduced compared to that obtained on the unmodified surface. This work suggests that the antimicrobial and antifouling coating used in this study could be effectively integrated into medical and other clinically relevant devices to prevent bacterial growth and to minimize bacteria-associated adverse host responses.