218 resultados para optimal stopping rule
Resumo:
Classifier selection is a problem encountered by multi-biometric systems that aim to improve performance through fusion of decisions. A particular decision fusion architecture that combines multiple instances (n classifiers) and multiple samples (m attempts at each classifier) has been proposed in previous work to achieve controlled trade-off between false alarms and false rejects. Although analysis on text-dependent speaker verification has demonstrated better performance for fusion of decisions with favourable dependence compared to statistically independent decisions, the performance is not always optimal. Given a pool of instances, best performance with this architecture is obtained for certain combination of instances. Heuristic rules and diversity measures have been commonly used for classifier selection but it is shown that optimal performance is achieved for the `best combination performance' rule. As the search complexity for this rule increases exponentially with the addition of classifiers, a measure - the sequential error ratio (SER) - is proposed in this work that is specifically adapted to the characteristics of sequential fusion architecture. The proposed measure can be used to select a classifier that is most likely to produce a correct decision at each stage. Error rates for fusion of text-dependent HMM based speaker models using SER are compared with other classifier selection methodologies. SER is shown to achieve near optimal performance for sequential fusion of multiple instances with or without the use of multiple samples. The methodology applies to multiple speech utterances for telephone or internet based access control and to other systems such as multiple finger print and multiple handwriting sample based identity verification systems.
Resumo:
A modified Delphi approach has been applied in this study to investigate best practice and to determine the factors that contribute to optimal selection of projects. There are various standards and practices that some may recognise as representing best practice in this area. Many of these have similar characteristics and this study has found no single best practice. The study identified the factors that contribute to the optimal selection of projects as: culture, process, knowledge of the business, knowledge of the work, education, experience, governance, risk awareness, selection of players, preconceptions, and time pressures. All these factors were found to be significant; to be appropriate to public sector organisations, private sector organisations and government owned corporations; and to have a strong linkage to research on strategic decision making. These factors can be consolidated into two underlying factors of organisation culture and leadership.
Resumo:
Operational modal analysis (OMA) is prevalent in modal identifi cation of civil structures. It asks for response measurements of the underlying structure under ambient loads. A valid OMA method requires the excitation be white noise in time and space. Although there are numerous applications of OMA in the literature, few have investigated the statistical distribution of a measurement and the infl uence of such randomness to modal identifi cation. This research has attempted modifi ed kurtosis to evaluate the statistical distribution of raw measurement data. In addition, a windowing strategy employing this index has been proposed to select quality datasets. In order to demonstrate how the data selection strategy works, the ambient vibration measurements of a laboratory bridge model and a real cable-stayed bridge have been respectively considered. The analysis incorporated with frequency domain decomposition (FDD) as the target OMA approach for modal identifi cation. The modal identifi cation results using the data segments with different randomness have been compared. The discrepancy in FDD spectra of the results indicates that, in order to fulfi l the assumption of an OMA method, special care shall be taken in processing a long vibration measurement data. The proposed data selection strategy is easy-to-apply and verifi ed effective in modal analysis.
Resumo:
The use of immobilised TiO2 for the purification of polluted water streams introduces the necessity to evaluate the effect of mechanisms such as the transport of pollutants from the bulk of the liquid to the catalyst surface and the transport phenomena inside the porous film. Experimental results of the effects of film thickness on the observed reaction rate for both liquid-side and support-side illumination are here compared with the predictions of a one-dimensional mathematical model of the porous photocatalytic slab. Good agreement was observed between the experimentally obtained photodegradation of phenol and its by-products, and the corresponding model predictions. The results have confirmed that an optimal catalyst thickness exists and, for the films employed here, is 5 μm. Furthermore, the modelling results have highlighted the fact that porosity, together with the intrinsic reaction kinetics are the parameters controlling the photocatalytic activity of the film. The former by influencing transport phenomena and light absorption characteristics, the latter by naturally dictating the rate of reaction.
Resumo:
This article examines the fast moving debate on the law and policy surrounding shareholder voting on their companies’ remuneration report, at the AGM. Recently, Australia has moved from the ‘non-binding’ vote provided to shareholders, to the more prescriptive ‘two strikes rule’; that is, two negative shareholder resolutions after 1 July 2011 may result in a board re-election. While much commentary has focused on the potential threats— impacts on remuneration reports and the potential costs to the company — we discuss another potential consequence: an opportunity for board recruitment. At a time when companies are also expected to comment on their diversity policies, planning for a threatened ‘spill’ creates an opportunity for board composition planning and succession. The arguments presented are also placed in the context of the UK debate, where recent proposals advocate for wider stakeholder engagement and diversity in remuneration planning.
Resumo:
This paper proposes a new iterative method to achieve an optimally fitting plate for preoperative planning purposes. The proposed method involves integration of four commercially available software tools, Matlab, Rapidform2006, SolidWorks and ANSYS, each performing specific tasks to obtain a plate shape that fits optimally for an individual tibia and is mechanically safe. A typical challenge when crossing multiple platforms is to ensure correct data transfer. We present an example of the implementation of the proposed method to demonstrate successful data transfer between the four platforms and the feasibility of the method.
Resumo:
The selection of optimal camera configurations (camera locations, orientations, etc.) for multi-camera networks remains an unsolved problem. Previous approaches largely focus on proposing various objective functions to achieve different tasks. Most of them, however, do not generalize well to large scale networks. To tackle this, we propose a statistical framework of the problem as well as propose a trans-dimensional simulated annealing algorithm to effectively deal with it. We compare our approach with a state-of-the-art method based on binary integer programming (BIP) and show that our approach offers similar performance on small scale problems. However, we also demonstrate the capability of our approach in dealing with large scale problems and show that our approach produces better results than two alternative heuristics designed to deal with the scalability issue of BIP. Last, we show the versatility of our approach using a number of specific scenarios.
Resumo:
Using our porcine model of deep dermal partial thickness burn injury, various cooling techniques (15 degrees C running water, 2 degrees C running water, ice) of first aid were applied for 20 minutes compared with a control (ambient temperature). The subdermal temperatures were monitored during the treatment and wounds observed and photographed weekly for 6 weeks, observing reepithelialization, wound surface area and cosmetic appearance. Tissue histology and scar tensile strength were examined 6 weeks after burn. The 2 degrees C and ice treatments decreased the subdermal temperature the fastest and lowest, however, generally the 15 and 2 degrees C treated wounds had better outcomes in terms of reepithelialization, scar histology, and scar appearance. These findings provide evidence to support the current first aid guidelines of cold tap water (approximately 15 degrees C) for 20 minutes as being beneficial in helping to heal the burn wound. Colder water at 2 degrees C is also beneficial. Ice should not be used.
Resumo:
Using our porcine model of deep dermal partial thickness burn injury, various durations (10min, 20min, 30min or 1h) and delays (immediate, 10min, 1h, 3h) of 15 degrees C running water first aid were applied to burns and compared to untreated controls. The subdermal temperatures were monitored during the treatment and wounds observed weekly for 6 weeks, for re-epithelialisation, wound surface area and cosmetic appearance. At 6 weeks after the burn, tissue biopsies were taken of the scar for histological analysis. Results showed that immediate application of cold running water for 20min duration is associated with an improvement in re-epithelialisation over the first 2 weeks post-burn and decreased scar tissue at 6 weeks. First aid application of cold water for as little as 10min duration or up to 1h delay still provides benefit.
Resumo:
This paper presents an optimisation algorithm to maximize the loadability of single wire earth return (SWER) by minimizing the cost of batteries and regulators considering the voltage constraints and thermal limits. This algorithm, that finds the optimum location of batteries and regulators, uses hybrid discrete particle swarm optimization and mutation (DPSO + Mutation). The simulation results on realistic highly loaded SWER network show the effectiveness of using battery to improve the loadability of SWER network in a cost-effective way. In this case, while only 61% of peak load can be supplied without violating the constraints by existing network, the loadability of the network is increased to peak load by utilizing two battery sites which are located optimally. That is, in a SWER system like the studied one, each installed kVA of batteries, optimally located, supports a loadability increase as 2 kVA.
Resumo:
This paper describes a novel optimum path planning strategy for long duration AUV operations in environments with time-varying ocean currents. These currents can exceed the maximum achievable speed of the AUV, as well as temporally expose obstacles. In contrast to most other path planning strategies, paths have to be defined in time as well as space. The solution described here exploits ocean currents to achieve mission goals with minimal energy expenditure, or a tradeoff between mission time and required energy. The proposed algorithm uses a parallel swarm search as a means to reduce the susceptibility to large local minima on the complex cost surface. The performance of the optimisation algorithms is evaluated in simulation and experimentally with the Starbug AUV using a validated ocean model of Brisbane’s Moreton Bay.
Resumo:
Distributed generation (DG) resources are commonly used in the electric systems to obtain minimum line losses, as one of the benefits of DG, in radial distribution systems. Studies have shown the importance of appropriate selection of location and size of DGs. This paper proposes an analytical method for solving optimal distributed generation placement (ODGP) problem to minimize line losses in radial distribution systems using loss sensitivity factor (LSF) based on bus-injection to branch-current (BIBC) matrix. The proposed method is formulated and tested on 12 and 34 bus radial distribution systems. The classical grid search algorithm based on successive load flows is employed to validate the results. The main advantages of the proposed method as compared with the other conventional methods are the robustness and no need to calculate and invert large admittance or Jacobian matrices. Therefore, the simulation time and the amount of computer memory, required for processing data especially for the large systems, decreases.
Resumo:
Detecting anomalies in the online social network is a significant task as it assists in revealing the useful and interesting information about the user behavior on the network. This paper proposes a rule-based hybrid method using graph theory, Fuzzy clustering and Fuzzy rules for modeling user relationships inherent in online-social-network and for identifying anomalies. Fuzzy C-Means clustering is used to cluster the data and Fuzzy inference engine is used to generate rules based on the cluster behavior. The proposed method is able to achieve improved accuracy for identifying anomalies in comparison to existing methods.
Resumo:
Several websites utilise a rule-base recommendation system, which generates choices based on a series of questionnaires, for recommending products to users. This approach has a high risk of customer attrition and the bottleneck is the questionnaire set. If the questioning process is too long, complex or tedious; users are most likely to quit the questionnaire before a product is recommended to them. If the questioning process is short; the user intensions cannot be gathered. The commonly used feature selection methods do not provide a satisfactory solution. We propose a novel process combining clustering, decisions tree and association rule mining for a group-oriented question reduction process. The question set is reduced according to common properties that are shared by a specific group of users. When applied on a real-world website, the proposed combined method outperforms the methods where the reduction of question is done only by using association rule mining or only by observing distribution within the group.
Resumo:
In this paper, load profile and operational goal are used to find optimal sizing of combined PV-energy storage for a future grid-connected residential building. As part of this approach, five operational goals are introduced and the annual cost for each operation goal has been assessed. Finally, the optimal sizing for combined PV-energy storage has been determined, using direct search method. In addition, sensitivity of the annual cost to different parameters has been analyzed.