163 resultados para optic properties analysis
Resumo:
The development of semi aromatic polyamide/organoclays nanocomposites (PANC) is reported in this communication. New polyamide (PA) was successfully synthesized through direct polycondensation reaction between bio-based diacid and aromatic diamine. PA exhibited strong UV vis absorption band at 412 nm. Its photoluminescence spectrum showed maximum band at 511 nm in the green region. The surface modification of montmorillonite was carried out through ion-exchange reaction using 1,4-bis[4-aminophenoxy]butane (APB) as a modifier. Then PANCs containing 3 and 6 wt.% of the modified montmorillonite (MMT-APB) were prepared. Flammability and thermal properties of PA and the nanocomposites were studied by microscale combustion calorimeter (MCC), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). TGA results in both air and nitrogen atmospheres indicated improving in thermal properties of PANCs compared to the neat PA. According to MCC analysis, a 31.6% reduction in pHRR value has been achieved by introducing 6 wt.% of the organoclay in PA matrix.
Resumo:
Many techniques in information retrieval produce counts from a sample, and it is common to analyse these counts as proportions of the whole - term frequencies are a familiar example. Proportions carry only relative information and are not free to vary independently of one another: for the proportion of one term to increase, one or more others must decrease. These constraints are hallmarks of compositional data. While there has long been discussion in other fields of how such data should be analysed, to our knowledge, Compositional Data Analysis (CoDA) has not been considered in IR. In this work we explore compositional data in IR through the lens of distance measures, and demonstrate that common measures, naïve to compositions, have some undesirable properties which can be avoided with composition-aware measures. As a practical example, these measures are shown to improve clustering. Copyright 2014 ACM.
Resumo:
Magnetic behavior of soils can seriously hamper the performance of geophysical sensors. Currently, we have little understanding of the types of minerals responsible for the magnetic behavior, as well as their distribution in space and evolution through time. This study investigated the magnetic characteristics and mineralogy of Fe-rich soils developed on basaltic substrate in Hawaii. We measured the spatial distribution of magnetic susceptibility (χlf) and frequency dependence (χfd%) across three test areas in a well-developed eroded soil on Kaho'olawe and in two young soils on the Big Island of Hawaii. X-ray diffraction spectroscopy, x-ray fluorescence spectroscopy (XFCF), chemical dissolution, thermal analysis, and temperature-dependent magnetic studies were used to characterize soil development and mineralogy for samples from soil pits on Kaho'olawe, surface samples from all three test areas, and unweathered basalt from the Big Island of Hawaii. The measurements show a general increase in magnetic properties with increasing soil development. The XRF Fe data ranged from 13% for fresh basalt and young soils on the Big Island to 58% for material from the B horizon of Kaho'olawe soils. Dithionite-extractable and oxalate-extractable Fe percentages increase with soil development and correlate with χlf-and χfd%, respectively. Results from the temperature-dependent susceptibility measurements show that the high soil magnetic properties observed in geophysical surveys in Kaho'olawe are entirely due to neoformed minerals. The results of our studies have implications for the existing soil survey of Kaho'olawe and help identify methods to characterize magnetic minerals in tropical soils.
Resumo:
Phenols are well known noxious compounds, which are often found in various water sources. A novel analytical method has been researched and developed based on the properties of hemin–graphene hybrid nanosheets (H–GNs). These nanosheets were synthesized using a wet-chemical method, and they have peroxidase-like activity. Also, in the presence of H2O2, the nanosheets are efficient catalysts for the oxidation of the substrate, 4-aminoantipine (4-AP), and the phenols. The products of such an oxidation reaction are the colored quinone-imines (benzodiazepines). Importantly, these products enabled the differentiation of the three common phenols – pyrocatechol, resorcin and hydroquinone, with the use of a novel, spectroscopic method, which was developed for the simultaneous determination of the above three analytes. This spectroscopic method produced linear calibrations for the pyrocatechol (0.4–4.0 mg L−1), resorcin (0.2–2.0 mg L−1) and hydroquinone (0.8–8.0 mg L−1) analytes. In addition, kinetic and spectral data, obtained from the formation of the colored benzodiazepines, were used to establish multi-variate calibrations for the prediction of the three phenol analytes found in various kinds of water; partial least squares (PLS), principal component regression (PCR) and artificial neural network (ANN) models were used and the PLS model performed best.
Resumo:
Peptides constructed from α-helical subunits of the Lac repressor protein (LacI) were designed then tailored to achieve particular binding kinetics and dissociation constants for plasmid DNA purification and detection. Surface plasmon resonance was employed for quantification and characterization of the binding of double stranded Escherichia coli plasmid DNA (pUC19) via the lac operon (lacO) to "biomimics" of the DNA binding domain of LacI. Equilibrium dissociation constants (K D), association (k a), and dissociation rates (k d) for the interaction between a suite of peptide sequences and pUC19 were determined. K D values measured for the binding of pUC19 to the 47mer, 27mer, 16mer, and 14mer peptides were 8.8 ± 1.3 × 10 -10 M, 7.2 ± 0.6 × 10 -10 M, 4.5 ± 0.5 × 10 -8 M, and 6.2 ± 0.9 × 10 -6 M, respectively. These findings show that affinity peptides, composed of subunits from a naturally occurring operon-repressor interaction, can be designed to achieve binding characteristics suitable for affinity chromatography and biosensor devices.
Resumo:
At CRYPTO 2006, Halevi and Krawczyk proposed two randomized hash function modes and analyzed the security of digital signature algorithms based on these constructions. They showed that the security of signature schemes based on the two randomized hash function modes relies on properties similar to the second preimage resistance rather than on the collision resistance property of the hash functions. One of the randomized hash function modes was named the RMX hash function mode and was recommended for practical purposes. The National Institute of Standards and Technology (NIST), USA standardized a variant of the RMX hash function mode and published this standard in the Special Publication (SP) 800-106. In this article, we first discuss a generic online birthday existential forgery attack of Dang and Perlner on the RMX-hash-then-sign schemes. We show that a variant of this attack can be applied to forge the other randomize-hash-then-sign schemes. We point out practical limitations of the generic forgery attack on the RMX-hash-then-sign schemes. We then show that these limitations can be overcome for the RMX-hash-then-sign schemes if it is easy to find fixed points for the underlying compression functions, such as for the Davies-Meyer construction used in the popular hash functions such as MD5 designed by Rivest and the SHA family of hash functions designed by the National Security Agency (NSA), USA and published by NIST in the Federal Information Processing Standards (FIPS). We show an online birthday forgery attack on this class of signatures by using a variant of Dean’s method of finding fixed point expandable messages for hash functions based on the Davies-Meyer construction. This forgery attack is also applicable to signature schemes based on the variant of RMX standardized by NIST in SP 800-106. We discuss some important applications of our attacks and discuss their applicability on signature schemes based on hash functions with ‘built-in’ randomization. Finally, we compare our attacks on randomize-hash-then-sign schemes with the generic forgery attacks on the standard hash-based message authentication code (HMAC).
Resumo:
Chronic difficulties arising from mild brain injury (TBI) are difficult to predict because the processes underlying changes after TBI are poorly understood. In mild brain injury the extent of neuropsychiatric and cognitive symptoms correspond poorly to overt tissue loss (Barth 1983; Liu 2010). Cellular, immune and hormonal cascades occurring after injury and continuing during the healing process may impact uninjured brain regions sensitive to the effects of physiological and emotional stress, which receive projections from the injury site. Changes in these most basic properties due to injury or disease have profound implications for virtually every aspect of brain function through disruption of neurotransmitter, neuroendocrine and metabolic systems. In order to screen for changes in transmitter and metabolic activity, in this study we developed Single voxel proton Magnetic Resonance Spectroscopy (1H-MRS) for use in both injured and control animals. We first evaluated if 1H-MRS could be used to evaluate in vivo, alterations in brain metabolism and catabolism of the prefrontal cortex, amygdala and ventral hippocampus in both control and injured animals after controlled cortical impact injury to the rat prefrontal cortex. We found that metabolite measurements for Myo-Inositol, Choline, creatine, Glutamate+Glutamine, and N-acetyl-acetate are attainable in deep brain structures in vivo in injured and controls rats. We next seek to evaluate longitudinally, in vivo, alterations in brain metabolism and catabolism of the prefrontal cortex, amygdala and ventral hippocampus during the first month after controlled cortical impact injury to the rat prefrontal cortex. These ongoing studies will provide data on the changes in transmitters and metabolites over time in injured and non-injured subjects. These studies address some of the fundamental questions about how mild brain injury has such diverse effects on overall brain health and function.
Resumo:
The objective of this project is to investigate the strain-rate dependent mechanical behaviour of single living cells using both experimental and numerical techniques. The results revealed that living cells behave as porohyperlastic materials and that both solid and fluid phases within the cells play important roles in their mechanical responses. The research reported in this thesis provides a better understanding of the mechanisms underlying the cellular responses to external mechanical loadings and of the process of mechanical signal transduction in living cells. It would help us to enhance knowledge of and insight into the role of mechanical forces in supporting tissue regeneration or degeneration.
Resumo:
BACKGROUND There are significant disparities in cancer outcomes between Indigenous and non-Indigenous Australians. Identifying the unmet supportive care needs of Indigenous Australians with cancer is imperative to improve their cancer care. The purpose of this study was to test the psychometric properties of a supportive care needs assessment tool for Indigenous Australian (SCNAT-IP) cancer patients. METHODS The SCNAT-IP was administered to 248 Indigenous Australians diagnosed with a range of cancer types and stages, and received treatment in one of four Queensland hospitals. All 39 items were assessed for ceiling and floor effects and analysed using exploratory factor analysis (EFA) to determine construct validity. Identified factors were assessed for internal consistency and convergent validity to validated psychosocial tools. RESULTS EFA revealed a four-factor structure (physical and psychological, hospital care, information and communication, and practical and cultural needs) explaining 51% of the variance. Internal consistency of four subscales was good, with Cronbach Alpha reliability coefficients ranging from 0.70-0.89. Convergent validity was supported by significant correlations between the SCNAT-IP with the Distress Thermometer (r=0.60, p<0.001), and The Cancer Worry Chart (r=0.58, p<0.001) and a moderately strong negative correlation with Assessment of Quality of Life questionnaire (r=-0.56, p<0.001). CONCLUSION These data provide initial support for the SCNAT-IP a measure of multiple supportive care needs domains specific to Indigenous Australian cancer patients undergoing treatment.
Resumo:
Staphylococcus aureus (S. aureus) is a prominent human and livestock pathogen investigated widely using omic technologies. Critically, due to availability, low visibility or scattered resources, robust network and statistical contextualisation of the resulting data is generally under-represented. Here, we present novel meta-analyses of freely-accessible molecular network and gene ontology annotation information resources for S. aureus omics data interpretation. Furthermore, through the application of the gene ontology annotation resources we demonstrate their value and ability (or lack-there-of) to summarise and statistically interpret the emergent properties of gene expression and protein abundance changes using publically available data. This analysis provides simple metrics for network selection and demonstrates the availability and impact that gene ontology annotation selection can have on the contextualisation of bacterial omics data.
Resumo:
BACKGROUND CONTEXT: The Neck Disability Index frequently is used to measure outcomes of the neck. The statistical rigor of the Neck Disability Index has been assessed with conflicting outcomes. To date, Confirmatory Factor Analysis of the Neck Disability Index has not been reported for a suitably large population study. Because the Neck Disability Index is not a condition-specific measure of neck function, initial Confirmatory Factor Analysis should consider problematic neck patients as a homogenous group. PURPOSE: We sought to analyze the factor structure of the Neck Disability Index through Confirmatory Factor Analysis in a symptomatic, homogeneous, neck population, with respect to pooled populations and gender subgroups. STUDY DESIGN: This was a secondary analysis of pooled data. PATIENT SAMPLE: A total of 1,278 symptomatic neck patients (67.5% female, median age 41 years), 803 nonspecific and 475 with whiplash-associated disorder. OUTCOME MEASURES: The Neck Disability Index was used to measure outcomes. METHODS: We analyzed pooled baseline data from six independent studies of patients with neck problems who completed Neck Disability Index questionnaires at baseline. The Confirmatory Factor Analysis was considered in three scenarios: the full sample and separate sexes. Models were compared empirically for best fit. RESULTS: Two-factor models have good psychometric properties across both the pooled and sex subgroups. However, according to these analyses, the one-factor solution is preferable from both a statistical perspective and parsimony. The two-factor model was close to significant for the male subgroup (p<.07) where questions separated into constructs of mental function (pain, reading headaches and concentration) and physical function (personal care, lifting, work, driving, sleep, and recreation). CONCLUSIONS: The Neck Disability Index demonstrated a one-factor structure when analyzed by Confirmatory Factor Analysis in a pooled, homogenous sample of neck problem patients. However, a two-factor model did approach significance for male subjects where questions separated into constructs of mental and physical function. Further investigations in different conditions, subgroup and sex-specific populations are warranted.
Resumo:
Modern non-invasive brain imaging technologies, such as diffusion weighted magnetic resonance imaging (DWI), enable the mapping of neural fiber tracts in the white matter, providing a basis to reconstruct a detailed map of brain structural connectivity networks. Brain connectivity networks differ from random networks in their topology, which can be measured using small worldness, modularity, and high-degree nodes (hubs). Still, little is known about how individual differences in structural brain network properties relate to age, sex, or genetic differences. Recently, some groups have reported brain network biomarkers that enable differentiation among individuals, pairs of individuals, and groups of individuals. In addition to studying new topological features, here we provide a unifying general method to investigate topological brain networks and connectivity differences between individuals, pairs of individuals, and groups of individuals at several levels of the data hierarchy, while appropriately controlling false discovery rate (FDR) errors. We apply our new method to a large dataset of high quality brain connectivity networks obtained from High Angular Resolution Diffusion Imaging (HARDI) tractography in 303 young adult twins, siblings, and unrelated people. Our proposed approach can accurately classify brain connectivity networks based on sex (93% accuracy) and kinship (88.5% accuracy). We find statistically significant differences associated with sex and kinship both in the brain connectivity networks and in derived topological metrics, such as the clustering coefficient and the communicability matrix.
Resumo:
The study examines the property value impacts of an announcement of a project which has potential environmental impacts as distinct from other studies that address costs associated with under-construction and the operating impacts of developments. The hypothesis is that the announcement of a proposed project with potential environmental impact creates uncertainty in the property market of the affected area, and this impact is greater on properties closer to the project than those farther from it. The results of the study confirm the hypothesis and indicate that the marginal willingness to pay for properties within a 5 km distance declined by AU$17,020 per km proximity to the proposed heavy vehicle route, after the proposed route was announced. The results support the need for more holistic measurement of cost–benefit analysis of projects and provide a basis for improved consideration by policy makers of the rights of affected parties.
Resumo:
Encroaching built environment with increased fault current levels is demanding a robust design approach and prolonged improved performance of the earth grid. With this in mind, the aim of the project was to perform a sensitivity analysis of the earth grid and an earthing performance evaluation with graphene coated conductors. Subsequent to these, a conceptual design to continuously monitor the performance of the earth grid was developed. In this study, earth grid design standards were compared to evaluate their appropriate use in determining the safety condition. A process to grow a thin film of graphene on the surface of cylindrical copper rods was developed to evaluate earthing performance in terms of conductivity and corrosion susceptibility.
Resumo:
Big Datasets are endemic, but they are often notoriously difficult to analyse because of their size, heterogeneity, history and quality. The purpose of this paper is to open a discourse on the use of modern experimental design methods to analyse Big Data in order to answer particular questions of interest. By appealing to a range of examples, it is suggested that this perspective on Big Data modelling and analysis has wide generality and advantageous inferential and computational properties. In particular, the principled experimental design approach is shown to provide a flexible framework for analysis that, for certain classes of objectives and utility functions, delivers near equivalent answers compared with analyses of the full dataset under a controlled error rate. It can also provide a formalised method for iterative parameter estimation, model checking, identification of data gaps and evaluation of data quality. Finally, it has the potential to add value to other Big Data sampling algorithms, in particular divide-and-conquer strategies, by determining efficient sub-samples.