138 resultados para microscopic structure of plant organs


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glycosaminoglycans (GAGs) are important complex carbohydrates that participate in many biological processes through the regulation of their various protein partners. Biochemical, structural biology and molecular modelling approaches have assisted in understanding the molecular basis of such interactions, creating an opportunity to capitalize on the large structural diversity of GAGs in the discovery of new drugs. The complexity of GAG–protein interactions is in part due to the conformational flexibility and underlying sulphation patterns of GAGs, the role of metal ions and the effect of pH on the affinity of binding. Current understanding of the structure of GAGs and their interactions with proteins is here reviewed: the basic structures and functions of GAGs and their proteoglycans, their clinical significance, the three-dimensional features of GAGs, their interactions with proteins and the molecular modelling of heparin binding sites and GAG–protein interactions. This review focuses on some key aspects of GAG structure–function relationships using classical examples that illustrate the specificity of GAG–protein interactions, such as growth factors, anti-thrombin, cytokines and cell adhesion molecules. New approaches to the development of GAG mimetics as possible new glycotherapeutics are also briefly covered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silicon batteries have attracted much attention in recent years due to their high theoretical capacity, although a rapid capacity fade is normally observed, attributed mainly to volume expansion during lithiation. Here, we report for the first time successful synthesis of Si/void/SiO2/void/C nanostructures. The synthesis strategy only involves selective etching of SiO2 in Si/SiO2/C structures with hydrofluoric acid solution. Compared with reported results, such novel structures include a hard SiO2-coated layer, a conductive carbon-coated layer, and two internal void spaces. In the structures, the carbon can enhance conductivity, the SiO2 layer has mechanically strong qualities, and the two internal void spaces can confine and accommodate volume expansion of silicon during lithiation. Therefore, these specially designed dual yolk-shell structures exhibit a stable and high capacity of 956 mA h g−1 after 430 cycles with capacity retention of 83%, while the capacity of Si/C core-shell structures rapidly decreases in the first ten cycles under the same experimental conditions. The novel dual yolk-shell structures developed for Si can also be extended to other battery materials that undergo large volume changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant microRNAs (miRNAs) are important regulatory switches. Recent advances have revealed many regulatory layers between the two essential processes, miRNA biogenesis and function. However, how these multilayered regulatory processes ultimately control miRNA gene regulation and connects miRNAs and plant responses with the surrounding environment is still largely unknown. In this opinion article, we propose that the miRNA pathway is highly dynamic and plastic. The apparent flexibility of the miRNA pathway in plants appears to be controlled by a number recently identified proteins and poorly characterized signaling cascades. We further propose that altered miRNA accumulation can be a direct consequence of the rewiring of interactions between proteins that function in the miRNA pathway, an avenue that remains largely unexplored.