168 resultados para knee extensor


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective The aim of this study was to test the possible involvement, relevance and significance of dentin matrix protein 1 (DMP1) in chondrocyte redifferentiation and OA. Methods To examine the function of DMP1 in vitro, bone marrow stromal cells (BMSCs) and articular chondrocytes (ACs) were isolated and differentiated in micromasses in the presence or absence of DMP1 small interfering RNA and analysed for chondrogenic phenotype. The association of DMP1 expression with OA progression was analysed time dependently in the OA menisectomy rat model and in grade-specific OA human samples. Results It was found that DMP1 was strongly related to chondrogenesis, which was evidenced by the strong expression of DMP1 in the 14.5-day mouse embryonic cartilage development stage and in femoral heads of post-natal days 0 and 4. In vitro chondrogenesis in BMSCs and ACs was accompanied by a gradual increase in DMP1 expression at both the gene and protein levels. In addition, knockdown of DMP1 expression led to decreased chondrocyte marker genes, such as COL2A1, ACAN and SOX9, and an increase in the expression of COL10A and MMP13 in ACs. Moreover, treatment with IL-1β, a well-known catabolic culprit of proteoglycan matrix loss, significantly reduced the expression of DMP1. Furthermore, we also observed the suppression of DMP1 protein in a grade-specific manner in knee joint samples from patients with OA. In the menisectomy-induced OA model, an increase in the Mankin score was accompanied by the gradual loss of DMP1 expression. Conclusion Observations from this study suggest that DMP1 may play an important role in maintaining the chondrogenic phenotype and its possible involvement in altered cartilage matrix remodelling and degradation in disease conditions like OA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydroxyapatite (HA) coatings have numerous applications in orthopedics and dentistry, owing to their excellent ability to promote stronger implant fixation and faster bone tissue ingrowth and remodeling. Thermal plasma spray and other plasma-assisted techniques have recently been used to synthesize various calcium phosphate-based bioceramics. Despite notable recent achievements in the desired stoichiometry, phase composition, mechanical, structural, and bio-compatible properties, it is rather difficult to combine all of the above features in a single coating. For example, many existing plasma-sprayed HA coatings fall short in meeting the requirements of grain size and crystallinity, and as such are subject to enhanced resorption in body fluid. On the other hand, relatively poor interfacial bonding and stability is an obstacle to the application of the HA coatings in high load bearing Ti6Al4V knee joint implants. Here, we report on an alternative: a plasma-assisted, concurrent, sputtering deposition technique for high performance biocompatible HA coatings on Ti6Al4V implant alloy. The plasma-assisted RF magnetron co-sputtering deposition method allows one to simultaneously achieve most of the desired attributes of the biomimetic material and overcome the aforementioned problems. This article details the film synthesis process specifications, extensive analytical characterization of the material's properties, mechanical testing, simulated body fluid assessments, biocompatibility and cytocompatibility of the HA-coated Ti6Al4V orthopedic alloy. The means of optimization of the plasma and deposition process parameters to achieve the desired attributes and performance of the HA coating, as well as future challenges in clinical applications are also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction This research evaluated the effect of tendinopathy on the cumulative transverse strain response of the patellar tendon to a bout of resistive quadriceps exercise. Methods Nine adults with unilateral patellar tendinopathy (age 18.2±0.7 years, height 1.92±0.06 m and weight 76.8±6.8 kg) and ten healthy adults free of knee pain (age 17.8±0.8 years, height 1.83±0.05 m and weight 73.2±7.6 kg) underwent standardised sagittal sonograms (7.2–14 MHz linear–array transducer) of both patellar tendons immediately prior and following 45 repetitions of a double–leg decline–squat exercise performed against a resistance of 145% bodyweight. Tendon thickness was determined 5–mm and 25–mm distal to the patellar pole. Transverse Hencky strain was calculated as the natural log of the ratio of post– to pre–exercise tendon thickness and expressed as a percentage. Measures of tendon echogenicity were calculated within the superficial and deep aspects of each tendon site from gray–scale profiles. Intratendinous microvessels were evaluated using power Doppler ultrasound. Results The cumulative transverse strain response to exercise in symptomatic tendinopathy was significantly lower than that of asymptomatic and healthy tendon (P<.05). There was also a significant reduction (57%) in the area of microvascularity immediately following exercise (P=.05), which was positively correlated (r=0.93, P<.05) with VISA-P score. Conclusions This study is the first to show that patellar tendinopathy is associated with an altered morphological and mechanical response of the tendon to exercise, which is manifest by a reduction in cumulative transverse strain and microvascularity, when present. Research directed toward identifying factors that influence the acute microvascular and transverse strain response of the patellar tendon to exercise in the various stages of tendinopathy is warranted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE The purpose of this study was to demonstrate the potential of near infrared (NIR) spectroscopy for characterizing the health and degenerative state of articular cartilage based on the components of the Mankin score. METHODS Three models of osteoarthritic degeneration induced in laboratory rats by anterior cruciate ligament (ACL) transection, meniscectomy (MSX), and intra-articular injection of monoiodoacetate (1 mg) (MIA) were used in this study. Degeneration was induced in the right knee joint; each model group consisted of 12 rats (N = 36). After 8 weeks, the animals were euthanized and knee joints were collected. A custom-made diffuse reflectance NIR probe of 5-mm diameter was placed on the tibial and femoral surfaces, and spectral data were acquired from each specimen in the wave number range of 4,000 to 12,500 cm(-1). After spectral data acquisition, the specimens were fixed and safranin O staining (SOS) was performed to assess disease severity based on the Mankin scoring system. Using multivariate statistical analysis, with spectral preprocessing and wavelength selection technique, the spectral data were then correlated to the structural integrity (SI), cellularity (CEL), and matrix staining (SOS) components of the Mankin score for all the samples tested. RESULTS ACL models showed mild cartilage degeneration, MSX models had moderate degeneration, and MIA models showed severe cartilage degenerative changes both morphologically and histologically. Our results reveal significant linear correlations between the NIR absorption spectra and SI (R(2) = 94.78%), CEL (R(2) = 88.03%), and SOS (R(2) = 96.39%) parameters of all samples in the models. In addition, clustering of the samples according to their level of degeneration, with respect to the Mankin components, was also observed. CONCLUSIONS NIR spectroscopic probing of articular cartilage can potentially provide critical information about the health of articular cartilage matrix in early and advanced stages of osteoarthritis (OA). CLINICAL RELEVANCE This rapid nondestructive method can facilitate clinical appraisal of articular cartilage integrity during arthroscopic surgery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The prevalence of leg ulcers of is 0.12%–1.1% and >3,000 lower limb amputations are performed yearly in Australia due to non-healing leg or foot ulcers. Although evidence on leg ulcer management is available, a significant evidence-practice gap exists. To identify current leg ulcer management, a cross-sectional retrospective study was undertaken in Brisbane, Australia. A sample of 104 clients was recruited from a community specialist wound clinic and a tertiary hospital outpatient’s specialist wound clinic. All clients had an ulcer below their knee or on their foot for ≥4 weeks. Data were collected on ulcer care, health service usage and clinical history for the year prior to admission. On admission, participants reported having their ulcer for a median of 25 weeks (range 2-728 weeks); with 51% (53/104) reporting an ulcer duration of ≥24 weeks. Including the wound clinic, participants sought ulcer care from a median of 3 health care providers (range 2-7). General Practitioners provided ulcer care to 82% of participants. Nearly half (42%) had self-cared for their ulcer; 29% (30/104) received treatment by a community nurse. A gap was found between the community-based ulcer care experienced by this population and evidence-based guidelines in regards to assessment, management, advice, and referrals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hamstring strain injuries (HSIs) are the most prevalent injury in a number of sports, and while anterior cruciate ligament (ACL) injuries are less common, they are far more severe and have long-term implications, such as an increased risk of developing osteoarthritis later in life. Given the high incidence and severity of these injuries, they are key targets of injury preventive programs in elite sport. Evidence has shown that a previous severe knee injury (including ACL injury) increases the risk of HSI; however, whether the functional deficits that occur after HSI result in an increased risk of ACL injury has yet to be considered. In this clinical commentary, we present evidence that suggests that the link between previous HSI and increased risk of ACL injury requires further investigation by drawing parallels between deficits in hamstring function after HSI and in women athletes, who are more prone to ACL injury than men athletes. Comparisons between the neuromuscular function of the male and female hamstring has shown that women display lower hamstring-to-quadriceps strength ratios during isokinetic knee flexion and extension, increased activation of the quadriceps compared with the hamstrings during a stop-jump landing task, a greater time required to reach maximal isokinetic hamstring torque, and lower integrated myoelectrical hamstring activity during a sidestep cutting maneuver. Somewhat similarly, in athletes with a history of HSI, the previously injured limb, compared with the uninjured limb, displays lower eccentric knee flexor strength, a lower hamstrings-to-quadriceps strength ratio, lower voluntary myoelectrical activity during maximal knee flexor eccentric contraction, a lower knee flexor eccentric rate of torque development, and lower voluntary myoelectrical activity during the initial portion of eccentric contraction. Given that the medial and lateral hamstrings have different actions at the knee joint in the coronal plane, which hamstring head is previously injured might also be expected to influence the likelihood of future ACL. Whether the deficits in function after HSI, as seen in laboratory-based studies, translate to deficits in hamstring function during typical injurious tasks for ACL injury has yet to be determined but should be a consideration for future work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Osteoarthritis is the most common cause of pain and disability in Australia. This project describes a method where hundreds of cartilage microtissues are generated as tiny building blocks for assembly into larger tissues suitable for cartilage defect repair. Tissue engineering applications has the potential to overcome natural barriers and effectively repair damaged cartilage tissue. However, engineering few-millimeter thick cartilage, similar to human cartilage in the knee, remains a challenge. Utilizing micropellets as building blocks has the potential to overcome some of the challenges in cartilage tissue engineering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objectives of this study were (A) to record the inner prosthesis loading during activities of daily living (ADL), (B) to present a set of variables comparing loading data, and (C) to provide an example of characterisation of two prostheses. The load was measured at 200 Hz using a multi-axial transducer mounted between the residuum and the knee of an individual with unilateral transfemoral amputation fitted with a bone-anchored prosthesis. The load was measured while using two different prostheses including a mechanically (PRO1) and a microprocessor controlled (PRO2) knee during six ADL. The characterisation of prosthesis was achieved using a set of variables split into four categories, including temporal characteristics, maximum loading, loading slopes and impulse. Approximately 360 gait cycles were analysed for each prosthesis. PRO1 showed a cadence improved by 19% and 7%, a maximum force on the long axis reduced by 11% and 19%, as well as an impulse reduced by 32% and 15% during descent of incline and stairs compared to PRO2, respectively. This work confirmed that the proposed apparatus and characterisation can reveal how changes of prosthetic components are translated into inner loading.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The consequences of falls are often dreadful for individuals with lower limb amputation using bone-anchored prosthesis.[1-5] Typically, the impact on the fixation is responsible for bending the intercutaneous piece that could lead to a complete breakage over time. .[3, 5-8] The surgical replacement of this piece is possible but complex and expensive. Clearly, there is a need for solid data enabling an evidence-based design of protective devices limiting impact forces and torsion applied during a fall. The impact on the fixation during an actual fall is obviously difficult to record during a scientific experiment.[6, 8-13] Consequently, Schwartze and colleagues opted for one of the next best options science has to offer: simulation with an able-bodied participant. They recorded body movements and knee impacts on the floor while mimicking several plausible falling scenarios. Then, they calculated the forces and moments that would be applied at four levels along the femur corresponding to amputation heights.[6, 8-11, 14-25] The overall forces applied during the falls were similar regardless of the amputation height indicating that the impact forces were simply translated along the femur. As expected, they showed that overall moments generally increased with amputation height due to changes in lever arm. This work demonstrates that devices preventing only against force overload do not require considering amputation height while those protecting against bending moments should. Another significant contribution is to provide, for the time, the magnitude of the impact load during different falls. This loading range is crucial to the overall design and, more precisely, the triggering threshold of protective devices. Unfortunately, the analysis of only a single able-bodied participant replicating falls limits greatly the generalisation of the findings. Nonetheless, this case study is an important milestone contributing to a better understanding of load impact during a fall. This new knowledge will improve the treatment, the safe ambulation and, ultimately, the quality of life of individuals fitted with bone-anchored prosthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enhancement of bone mineral acquisition during growth may be a useful preventive strategy against osteoporosis. The aim of this study was to explore the lean mass, strength, and bone mineral response to a 10-month, high-impact, strength-building exercise program in 71 premenarcheal girls, aged 9–10 years. Lean body mass, total body (TB), lumbar spine (LS), proximal femur (PF), and femoral neck (FN) bone mineral were measured using the Hologic QDR 2000+ bone densitometer. Strength was assessed using a grip dynamometer and the Cybex isokinetic dynamometer (Cybex II). At baseline, no significant difference in body composition, pubertal development, calcium intake, physical activity, strength, or bone mineral existed between groups. At completion, there were again no differences in height, total body mass, pubertal development, calcium intake, or external physical activity. In contrast, the exercise group gained significantly more lean mass, less body fat content, greater shoulder, knee and grip strength, and greater TB, LS, PF, and FN BMD (exercise: TB 3.5%, LS 4.8%, PF 4.5%, and FN 12.0%) compared with the controls (controls: TB 1.2%, LS 1.2%, PF 1.3%, and FN 1.7%). TB bone mineral content (BMC), LS BMC, PF BMC, FN BMC, LS bone mineral apparent density (BMAD), and FN bone area also increased at a significantly greater rate in the exercise group compared with the controls. In multiple regression analysis, change in lean mass was the primary determinant of TB, FN, PF, and LS BMD accrual. Although a large proportion of bone mineral accrual in the premenarcheal skeleton was related to growth, an osteogenic effect was associated with exercise. These results suggest that high-impact, strength building exercise is beneficial for premenarcheal strength, lean mass gains, and bone mineral acquisition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Researchers have postulated that reduced hip-abductor muscle strength may have a role in the progression of knee osteoarthritis by increasing the external knee-adduction moment. However, the relationship between hip-abductor strength and frontal-plane biomechanics remains unclear. To experimentally reduce hip-abduction strength and observe the subsequent changes in frontal-plane biomechanics. Descriptive laboratory study. Research laboratory. Eight healthy, recreationally active men (age = 27 ± 6 years, height = 1.75 ± 0.11 m, mass = 76.1 ± 10.0 kg). All participants underwent a superior gluteal nerve block injection to reduce the force output of the hip-abductor muscle group. Maximal isometric hip-abduction strength and gait biomechanical data were collected before and after the injections. Gait biomechanical variables collected during walking consisted of knee- and hip-adduction moments and impulses and the peak angles of contralateral pelvic drop, hip adduction, and ipsilateral trunk lean. Hip-abduction strength was reduced after the injection (P = .001) and remained lower than baseline values at the completion of the postinjection gait data collection (P = .02). No alterations in hip- or knee-adduction moments (hip: P = .11; knee: P = .52) or impulses (hip: P = .16; knee: P = .41) were found after the nerve block. Similarly, no changes in angular kinematics were observed for contralateral pelvic drop (P = .53), ipsilateral trunk lean (P = .78), or hip adduction (P = .48). A short-term reduction in hip-abductor strength was not associated with alterations in the frontal-plane gait biomechanics of young, healthy men. Further research is needed to determine whether a similar relationship is true in older adults with knee osteoarthritis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective The aim of this systematic review and meta-analysis was to determine the overall effect of resistance training (RT) on measures of muscular strength in people with Parkinson’s disease (PD). Methods Controlled trials with parallel-group-design were identified from computerized literature searching and citation tracking performed until August 2014. Two reviewers independently screened for eligibility and assessed the quality of the studies using the Cochrane risk-of-bias-tool. For each study, mean differences (MD) or standardized mean differences (SMD) and 95% confidence intervals (CI) were calculated for continuous outcomes based on between-group comparisons using post-intervention data. Subgroup analysis was conducted based on differences in study design. Results Nine studies met the inclusion criteria; all had a moderate to high risk of bias. Pooled data showed that knee extension, knee flexion and leg press strength were significantly greater in PD patients who undertook RT compared to control groups with or without interventions. Subgroups were: RT vs. control-without-intervention, RT vs. control-with-intervention, RT-with-other-form-of-exercise vs. control-without-intervention, RT-with-other-form-of-exercise vs. control-with-intervention. Pooled subgroup analysis showed that RT combined with aerobic/balance/stretching exercise resulted in significantly greater knee extension, knee flexion and leg press strength compared with no-intervention. Compared to treadmill or balance exercise it resulted in greater knee flexion, but not knee extension or leg press strength. RT alone resulted in greater knee extension and flexion strength compared to stretching, but not in greater leg press strength compared to no-intervention. Discussion Overall, the current evidence suggests that exercise interventions that contain RT may be effective in improving muscular strength in people with PD compared with no exercise. However, depending on muscle group and/or training dose, RT may not be superior to other exercise types. Interventions which combine RT with other exercise may be most effective. Findings should be interpreted with caution due to the relatively high risk of bias of most studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Contemporary models of spoken word production assume conceptual feature sharing determines the speed with which objects are named in categorically-related contexts. However, statistical models of concept representation have also identified a role for feature distinctiveness, i.e., features that identify a single concept and serve to distinguish it quickly from other similar concepts. In three experiments we investigated whether distinctive features might explain reports of counter-intuitive semantic facilitation effects in the picture word interference (PWI) paradigm. In Experiment 1, categorically-related distractors matched in terms of semantic similarity ratings (e.g., zebra and pony) and manipulated with respect to feature distinctiveness (e.g., a zebra has stripes unlike other equine species) elicited interference effects of comparable magnitude. Experiments 2 and 3 investigated the role of feature distinctiveness with respect to reports of facilitated naming with part-whole distractor-target relations (e.g., a hump is a distinguishing part of a CAMEL, whereas knee is not, vs. an unrelated part such as plug). Related part distractors did not influence target picture naming latencies significantly when the part denoted by the related distractor was not visible in the target picture (whether distinctive or not; Experiment 2). When the part denoted by the related distractor was visible in the target picture, non-distinctive part distractors slowed target naming significantly at SOA of -150 ms (Experiment 3). Thus, our results show that semantic interference does occur for part-whole distractor-target relations in PWI, but only when distractors denote features shared with the target and other category exemplars. We discuss the implications of these results for some recently developed, novel accounts of lexical access in spoken word production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hamstring strain injuries are the predominant injury in many sports, costing athletes and clubs a significant financial and performance burden. Therefore the ability to identify and intervene with individuals who are considered at a high risk of injury is important. One measure which has grown in popularity as an outcome variable following hamstring intervention/prevention studies and rehabilitation is the angle of peak knee flexor torque. This current opinion article will firstly introduce the measure and the processes behind it. Secondly, this article will summarise how the angle of peak knee flexor torque has been suggested to measure hamstring strain injury risk. Finally various limitations will be presented and outlined as to how they may influence the measure. These include the lack of muscle specificity, the common concentric contraction mode of assessment, reliability of the measure, various neural contributions (such as rate of force development and neuromuscular inhibition) as well as the lack of prospective data showing any predictive value in the measure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: In the spondyloarthropathies, the underlying molecular and cellular pathways driving disease are poorly understood. By undertaking a study in knee synovial biopsies from spondyloarthropathy (SpA) and ankylosing spondylitis (AS) patients we aimed to elucidate dysregulated genes and pathways. Methods RNA was extracted from six SpA, two AS, three osteoarthritis (OA) and four normal control knee synovial biopsies. Whole genome expression profiling was undertaken using the Illumina DASL system, which assays 24000 cDNA probes. Differentially expressed candidate genes were then validated using quantitative PCR and immunohistochemistry. Results: Four hundred and sixteen differentially expressed genes were identified that clearly delineated between AS/SpA and control groups. Pathway analysis showed altered gene-expression in oxidoreductase activity, B-cell associated, matrix catabolic, and metabolic pathways. Altered «myogene» profiling was also identified. The inflammatory mediator, MMP3, was strongly upregulated (5-fold) in AS/SpA samples and the Wnt pathway inhibitors DKK3 (2.7-fold) and Kremen1 (1.5-fold) were downregulated. Conclusions: Altered expression profiling in SpA and AS samples demonstrates that disease pathogenesis is associated with both systemic inflammation as well as local tissue alterations that may underlie tissue damaging modelling and remodelling outcomes. This supports the hypothesis that initial systemic inflammation in spondyloarthropathies transfers to and persists in the local joint environment, and might subsequently mediate changes in genes directly involved in the destructive tissue remodelling.