201 resultados para hip dislocation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Pre-participation screening is commonly used to measure and assess potential intrinsic injury risk. The single leg squat is one such clinical screening measure used to assess lumbopelvic stability and associated intrinsic injury risk. With the addition of a decline board, the single leg decline squat (SLDS) has been shown to reduce ankle dorsiflexion restrictions and allowed greater sagittal plane movement of the hip and knee. On this basis, the SLDS has been employed in the Cricket Australia physiotherapy screening protocols as a measure of lumbopelvic control in the place of the more traditional single leg flat squat (SLFS). Previous research has failed to demonstrate which squatting technique allows for a more comprehensive assessment of lumbopelvic stability. Tenuous links are drawn between kinematics and hip strength measures within the literature for the SLS. Formal evaluation of subjective screening methods has also been suggested within the literature. Purpose: This study had several focal points namely 1) to compare the kinematic differences between the two single leg squatting conditions, primarily the five key kinematic variables fundamental to subjectively assess lumbopelvic stability; 2) determine the effect of ankle dorsiflexion range of motion has on squat kinematics in the two squat techniques; 3) examine the association between key kinematics and subjective physiotherapists’ assessment; and finally 4) explore the association between key kinematics and hip strength. Methods: Nineteen (n=19) subjects performed five SLDS and five SLFS on each leg while being filmed by an 8 camera motion analysis system. Four hip strength measures (internal/external rotation and abd/adduction) and ankle dorsiflexion range of motion were measured using a hand held dynamometer and a goniometer respectively on 16 of these subjects. The same 16 participants were subjectively assessed by an experienced physiotherapist for lumbopelvic stability. Paired samples t-tests were performed on the five predetermined kinematic variables to assess the differences between squat conditions. A Bonferroni correction for multiple comparisons was used which adjusted the significance value to p = 0.005 for the paired t-tests. Linear regressions were used to assess the relationship between kinematics, ankle range of motion and hip strength measures. Bivariate correlations between hip strength measures and kinematics and pelvic obliquity were employed to investigate any possible relationships. Results: 1) Significant kinematic differences between squats were observed in dominant (D) and non-dominant (ND) end of range hip external rotation (ND p = <0.001; D p = 0.004) and hip adduction kinematics (ND p = <0.001; D p = <0.001). With the mean angle, only the non-dominant leg observed significant differences in hip adduction (p = 0.001) and hip external rotation (p = <0.001); 2) Significant linear relationships were observed between clinical measures of ankle dorsiflexion and sagittal plane kinematic namely SLFS dominant ankle (p = 0.006; R2 = .429), SLFS non-dominant knee (p = 0.015; R2 = .352) and SLFS non-dominant ankle (p = 0.027; R2 = .305) kinematics. Only the dominant ankle (p = 0.020; R2 = .331) was found to have a relationship with the decline squat. 3) Strength measures had tenuous associations with the subjective assessments of lumbopelvic stability with no significant relationships being observed. 4) For the non-dominant leg, external rotation strength and abduction strength were found to be significantly correlated with hip rotation kinematics (Newtons r = 0.458 p = 0.049; Normalised for bodyweight: r = 0.469; p = 0.043) and pelvic obliquity (normalised for bodyweight: r = 0.498 p = 0.030) respectively for the SLFS only. No significant relationships were observed in the dominant leg for either squat condition. Some elements of the hip strength screening protocols had linear relationships with kinematics of the lower limb, particularly the sagittal plane movements of the knee and ankle. Strength measures had tenuous associations with the subjective assessments of lumbopelvic stability with no significant relationships being observed; Discussion: The key finding of this study illustrated that kinematic differences can occur at the hip without significant kinematic differences at the knee as a result of the introduction of a decline board. Further observations reinforce the role of limited ankle dorsiflexion range of motion on sagittal plane movement of the hip and knee and in turn multiplanar kinematics of the lower limb. The kinematic differences between conditions have clinical implications for screening protocols that employ frontal plane movement of the knee as a guide for femoral adduction and rotation. Subjects who returned stronger hip strength measurements also appeared to squat deeper as characterised by differences in sagittal plane kinematics of the knee and ankle. Despite the aforementioned findings, the relationship between hip strength and lower limb kinematics remains largely tenuous in the assessment of the lumbopelvic stability using the SLS. The association between kinematics and the subjective measures of lumbopelvic stability also remain tenuous between and within SLS screening protocols. More functional measures of hip strength are needed to further investigate these relationships. Conclusion: The type of SLS (flat or decline) should be taken into account when screening for lumbopelvic stability. Changes to lower limb kinematics, especially around the hip and pelvis, were observed with the introduction of a decline board despite no difference in frontal plane knee movements. Differences in passive ankle dorsiflexion range of motion yielded variations in knee and ankle kinematics during a self-selected single leg squatting task. Clinical implications of removing posterior ankle restraints and using the knee as a guide to illustrate changes at the hip may result in inaccurate screening of lumbopelvic stability. The relationship between sagittal plane lower limb kinematics and hip strength may illustrate that self-selected squat depth may presumably be a useful predictor of the lumbopelvic stability. Further research in this area is required.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Total hip arthroplasty (THA) has a proven clinical record for providing pain relief and return of function to patients with disabling arthritis. There are many successful options for femoral implant design and fixation. Cemented, polished, tapered femoral implants have been shown to have excellent results in national joint registries and long-term clinical series. These implants are usually 150mm long at their lateral aspect. Due to their length, these implants cannot always be offered to patients due to variations in femoral anatomy. Polished, tapered implants as short as 95mm exist, however their small proximal geometry (neck offset and body size) limit their use to smaller stature patients. There is a group of patients in which a shorter implant with a maintained proximal body size would be advantageous. There are also potential benefits to a shorter implant in standard patient populations such as reduced bone removal due to reduced reaming, favourable loading of the proximal femur, and the ability to revise into good proximal bone stock if required. These factors potentially make a shorter implant an option for all patient populations. The role of implant length in determining the stability of a cemented, polished, tapered femoral implant is not well defined by the literature. Before changes in implant design can be made, a better understanding of the role of each region in determining performance is required. The aim of the thesis was to describe how implant length affects the stability of a cemented, polished, tapered femoral implant. This has been determined through an extensive body of laboratory testing. The major findings are that for a given proximal body size, a reduction in implant length has no effect on the torsional stability of a polished, tapered design, while a small reduction in axial stability should be expected. These findings are important because the literature suggests that torsional stability is the major determinant of long-term clinical performance of a THA system. Furthermore, a polished, tapered design is known to be forgiving of cement-implant interface micromotion due to the favourable wear characteristics. Together these findings suggest that a shorter polished, tapered implant may be well tolerated. The effect of a change in implant length on the geometric characteristics of polished, tapered design were also determined and applied to the mechanical testing. Importantly, interface area does play a role in stability of the system; however it is the distribution of the interface and not the magnitude of the area that defines stability. Taper angle (at least in the range of angles seen in this work) was shown not to be a determinant of axial or torsional stability. A range of implants were tested, comparing variations in length, neck offset and indication (primary versus cement-in-cement revision). At their manufactured length, the 125mm implants were similar to their longer 150mm counterparts suggesting that they may be similarly well tolerated in the clinical environment. However, the slimmer cement-in-cement revision implant was shown to have a poorer mechanical performance, suggesting their use in higher demand patients may be hazardous. An implant length of 125mm has been shown to be quite stable and the results suggest that a further reduction to 100mm may be tolerated. However, further work is required. A shorter implant with maintained proximal body size would be useful for the group of patients who are unable to access the current standard length implants due to variations in femoral anatomy. Extending the findings further, the similar function with potential benefits of a shorter implant make their application to all patients appealing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The standard Exeter stem has a length of 150mm with offsets 37.5mm to 56mm. Shorter stems of lengths 95mm, 115mm and 125mm with offsets 35.5mm or less are available for patients with smaller femurs. Concern has been raised regarding the behaviour of the smaller implants. This paper analysed data from the Australian Orthopaedic Association National Joint Replacement Registry comparing survivorship of stems of offset 35.5mm or less with the standard stems of 37.5mm offset or greater. At seven years there was no significant difference in the Cumulative Percent Revision Rate in the short stems (3.4%, 95% CI 2.4-4.8%) compared with the standard length stems (3.5%, 95% CI 3.3-3.8%) despite its use in a greater proportion of potentially more difficult developmental dysplasia of the hip cases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Diabetes mellitus has reached epidemic proportions worldwide. South Asians are known to have an increased predisposition for diabetes which has become an important health concern in the region. We discuss the prevalence of pre-diabetes and diabetes in South Asia and explore the differential risk factors reported. Methods Prevalence data were obtained by searching the Medline® database with; ‘prediabetes’ and ‘diabetes mellitus’ (MeSH major topic) and ‘Epidemology/EP’ (MeSH subheading). Search limits were articles in English, between 01/01/1980–31/12/2011, on human adults (≥19 years). The conjunction of the above results was narrowed down with country names. Results The most recent reported prevalence of pre-diabetes:diabetes in regional countries were; Bangladesh–4.7%:8.5% (2004–2005;Rural), India–4.6%:12.5% (2007;Rural); Maldives–3.0%:3.7% (2004;National), Nepal–19.5%:9.5% (2007;Urban), Pakistan–3.0%:7.2% (2002;Rural), Sri Lanka–11.5%:10.3% (2005–2006;National). Urban populations demonstrated a higher prevalence of diabetes. An increasing trend in prevalence of diabetes was observed in urban/rural India and rural Sri Lanka. The diabetes epidemicity index decreased with the increasing prevalence of diabetes in respective countries. A high epidemicity index was seen in Sri Lanka (2005/2006–52.8%), while for other countries, the epidemicity index was comparatively low (rural India 2007–26.9%; urban India 2002/2005–31.3%, and urban Bangladesh–33.1%). Family history, urban residency, age, higher BMI, sedentary lifestyle, hypertension and waist-hip ratio were associated with an increased risks of diabetes. Conclusion A significant epidemic of diabetes is present in the South Asian region with a rapid increase in prevalence over the last two decades. Hence there is a need for urgent preventive and curative strategies .

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although there is a paucity of scientific support for the benefits of warm-up, athletes commonly warm up prior to activity with the intention of improving performance and reducing the incidence of injuries. The purpose of this study was to examine the role of warm-up intensity on both range of motion (ROM) and anaerobic performance. Nine males (age = 21.7 +/- 1.6 years, height = 1.77 +/- 0.04 m, weight = 80.2 +/- 6.8 kg, and VO2max = 60.4 +/- 5.4 ml/kg/min) completed four trials. Each trial consisted of hip, knee, and ankle ROM evaluation using an electronic inclinometer and an anaerobic capacity test on the treadmill (time to fatigue at 13 km/hr and 20% grade). Subjects underwent no warm-up or a warm-up of 15 minutes running at 60, 70 or 80% VO2max followed by a series of lower limb stretches. Intensity of warm-up had little effect on ROM, since ankle dorsiflexion and hip extension significantly increased in all warm-up conditions, hip flexion significantly increased only after the 80% VO2max warm-up, and knee flexion did not change after any warm-up. Heart rate and body temperature were significantly increased (p < 0.05) prior to anaerobic performance for each of the warm-up conditions, but anaerobic performance improved significantly only after warm-up at 60% VO2max (10%) and 70% VO2max (13%). A 15-minute warm-up at an intensity of 60-70% VO2max is therefore recommended to improve ROM and enhance subsequent anaerobic performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The selection of appropriate analogue materials is a central consideration in the design of realistic physical models. We investigate the rheology of highly-filled silicone polymers in order to find materials with a power-law strain-rate softening rheology suitable for modelling rock deformation by dislocation creep and report the rheological properties of the materials as functions of the filler content. The mixtures exhibit strain-rate softening behaviour but with increasing amounts of filler become strain-dependent. For the strain-independent viscous materials, flow laws are presented while for strain-dependent materials the relative importance of strain and strain rate softening/hardening is reported. If the stress or strain rate is above a threshold value some highly-filled silicone polymers may be considered linear visco-elastic (strain independent) and power-law strain-rate softening. The power-law exponent can be raised from 1 to ~3 by using mixtures of high-viscosity silicone and plasticine. However, the need for high shear strain rates to obtain the power-law rheology imposes some restrictions on the usage of such materials for geodynamic modelling. Two simple shear experiments are presented that use Newtonian and power-law strain-rate softening materials. The results demonstrate how materials with power-law rheology result in better strain localization in analogue experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose. To compare radiological records of 90 consecutive patients who underwent cemented total hip arthroplasty (THA) with or without use of the Rim Cutter to prepare the acetabulum. Methods. The acetabulum of 45 patients was prepared using the Rim Cutter, whereas the device was not used in the other 45 patients. Postoperative radiographs were evaluated using a digital templating system to measure (1) the positions of the operated hips with respect to the normal, contralateral hips (the centre of rotation of the socket, the height of the centre of rotation from the teardrop, and lateralisation of the centre of rotation from the teardrop) and (2) the uniformity and width of the cement mantle in the 3 DeLee Charnley acetabular zones, and the number of radiolucencies in these zones. Results. The study group showed improved radiological parameters and were closer to the anatomic centre of rotation both vertically (1.5 vs. 3.7 mm, p<0.001) and horizontally (1.8 vs. 4.4 mm, p<0.001) and had consistently thicker and more uniform cement mantles (p<0.001). There were 2 radiolucent lines in the control group but none in the study group. Conclusion. The Rim Cutter resulted in more accurate placement of the centre of rotation of a cemented prosthetic socket, and produced a thicker, more congruent cement mantle with fewer radiolucent lines.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Orthopaedics and Trauma Queensland, a Centre for Research and Education in Musculoskeletal Disorders, is an internationally recognised research group that is developing into an international leader in research and education. It provides a stimulus for research, education and clinical application within the international orthopaedic and trauma communities. Orthopaedics and Trauma Queensland develops and promotes the innovative use of engineering and technology, in collaboration with surgeons, to provide new techniques, materials, procedures and medical devices. Its integration with clinical practice and strong links with hospitals ensure that the research will be translated into practical outcomes for patients. The group undertakes clinical practice in orthopaedics and trauma and applies core engineering skills to challenges in medicine. The research is built on a strong foundation of knowledge in biomedical engineering, and incorporates expertise in cell biology, mathematical modelling, human anatomy and physiology and clinical medicine in orthopaedics and trauma. New knowledge is being developed and applied to the full range of orthopaedic diseases and injuries, such as knee and hip replacements, fractures and spinal deformities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is certain that there will be changes in environmental conditions across the globe as a result of climate change. Such changes will require the building of biological, human and infrastructure resilience. In some instances the building of such resilience will be insufficient to deal with extreme changes in environmental conditions and legal frameworks will be required to provide recognition and support for people dislocated because of environmental change. Such dislocation may occur internally within the country of original origin or externally into another State’s territory. International and national legal frameworks do not currently recognise or assist people displaced as a result of environmental factors including displacement occurring as a result of climate change. Legal frameworks developed to deal with this issue will need to consider the legal rights of those people displaced and the legal responsibilities of those countries required to respond to such displacement. The objective of this article is to identify the most suitable international institution to host a program addressing climate displacement. There are a number of areas of international law that are relevant to climate displacement, including refugee law, human rights law and international environmental law. These regimes, however, were not designed to protect people relocating as a result of environmental change. As such, while they indirectly may be of relevance to climate displacement, they currently do nothing to directly address this complex issue. In order to determine the most appropriate institution to address and regulate climate displacement, it is imperative to consider issues of governance. This paper seeks to examine this issue and determine whether it is preferable to place climate displacement programs into existing international legal frameworks or whether it is necessary to regulate this area in an entirely new institution specifically designed to deal with the complex and cross-cutting issues surrounding the topic. Commentators in this area have proposed three different regulatory models for addressing climate displacement. These models include: (a) Expand the definition of refugee under the Refugee Convention to encompass persons displaced by climate change; (b) Implement a new stand alone Climate Displacement Convention; and (c) Implement a Climate Displacement Protocol to the UNFCCC. This article will examine each of these proposed models against a number of criteria to determine the model that is most likely to address the needs and requirements of people displaced by climate change. It will also identify the model that is likely to be most politically acceptable and realistic for those countries likely to attract responsibilities by its implementation. In order to assess whether the rights and needs of the people to be displaced are to be met, theories of procedural, distributive and remedial justice will be used to consider the equity of the proposed schemes. In order to consider the most politically palatable and realistic scheme, reference will be made to previous state practice and compliance with existing obligations in the area. It is suggested that the criteria identified by this article should underpin any future climate displacement instrument.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE. To evaluate the utility of blood cultures in the assessment of early postoperative fever in hip fracture patients with no other indicators of sepsis. METHODS. 101 blood cultures were drawn on postoperative days 0 to 5 to investigate 84 febrile episodes in 31 women and 30 men (mean age, 80 years) whose body temperature measured via the tympanic route was ≥38ºC. Culture results of these 61 patients were divided into culture-positive and culture-negative groups for comparison. RESULTS. Of the 101 blood cultures, only 2 were positive: one was obtained 5 days after dynamic hip screw fixation, and the other 4 days after hemiarthroplasty. Both blood cultures grew coagulase-negative staphylococcal species, which were deemed to be skin contaminants not requiring change of patient management. 44 of these patients were treated with oral or intravenous antibiotics for a period of time. CONCLUSION. The risk of bacteraemia in patients with postoperative fever but no other symptoms of infection is low. Routine procurement of blood cultures in such patients is ineffective and of limited utility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to perform a biomechanical analysis of the cement-in-cement (c-in-c) technique for fixation of selected Vancouver Type B1 femoral periprosthetic fractures and to assess the degree of cement interposition at the fracture site. Six embalmed cadaveric femora were implanted with a cemented femoral stem. Vancouver Type B1 fractures were created by applying a combined axial and rotational load to failure. The femora were repaired using the c-in-c technique and reloaded to failure. The mean primary fracture torque was 117 Nm (SD 16.6, range 89–133). The mean revision fracture torque was 50 Nm (SD 16.6, range 29–74), which is above the torque previously observed for activities of daily living. Cement interposition at the fracture site was found to be minimal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cu/Ni/W nanolayered composites with individual layer thickness ranging from 5nm to 300nm were prepared by a magnetron sputtering system. Microstructures and strength of the nanolayered composites were investigated by using the nanoindentation method combined with theoretical analysis. Microstructure characterization revealed that the Cu/Ni/W composite consists of a typical Cu/Ni coherent interface and Cu/W and Ni/W incoherent interfaces. Cu/Ni/W composites have an ultrahigh strength and a large strengthening ability compared with bi-constituent Cu–X(X¼Ni, W, Au, Ag, Cr, Nb, etc.) nanolayered composites. Summarizing the present results and those reported in the literature, we systematically analyze the origin of the ultrahigh strength and its length scale dependence by taking into account the constituent layer properties, layer scales and heterogeneous layer/layer interface characteristics, including lattice and modulus mismatch as well as interface structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Filamentary single crystals, blades, sheets, euhedral crystals and powders may form by vapor phase condensation depending on the supersauration conditions in the vapor with respect to the condensing species [1]. Filamentary crystal growth requires the operation of an axial screw dislocation [2]. A Vapor-Liquid-Solid (VLS) mechanism may also produce filamentary single crystals, ribbons and blades. The latter two morphologies are typically twinned. Crystals grown by this mechanism do not require the presence of an axial screw dislocation. Impurities may either promote or inhibit crystal growth [3]. The VLS mechanism allows crystals to grow at small supersaturation of the vapor. Thin enstatite blades, ribbons and sheets have been observed in chondritic porous Interplanetary Dust Partics (IDP's) [4, 5]. The requisite screw dislocation for vapor phase condensation [1] has been observed in these enstatite blades [4]. Bradley et al. [4] suggest that these crystals are primary vapor phase condensates which could have formed either in the solar nebula or in presolar environments. These observations [4,5] are significant in that they may provide a demonstrable link to theoretical predictions: viz. that in the primordial solar nebula filamentary condensates could cluster into 'lint balls' and form the predecessors to comets [6].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Osteoporosis imposes a tremendous burden on Australia : 1.2 million Australians have osteoporosis and 6.3 million have Osteopenia. In the 2007-08 financial year, 82000 Australians suffered fragility fractures, of Which >17000 were hip fractures. In the 2000-01 financial year, direct costs were estimated at $1.9 billion per year and an additional $5.6 billion on indirect costs. Osteoporosis was designated a National Health Priority Area in 2002; however, implementation of national plans has not yet matched the rhetoric in terms of urgency. Building healthy bones throughout life, the Osteoporosis Australia strategy to prevent osteoporosis throughout the life cycle, presents an evidence-informed set of recommendations for consumers, health care professionals and policymakers. The strategy was adopted by consensus at the Osteoporosis Australia Summit in Sydney, 20 October 2011. Primary objectives throughout the life cycle are: to maximise peak bone mass during childhood and adolescence to prevent premature bone loss and improve or maintain muscle mass, strength and functional capacity in healthy adults to prevent and treat osteoporosis in order to minimise the risk of suffering fragility fractures, and reduce falls risk, in older people. The recommendations focus on three affordable and important interventions to ensure people have adequate calcium intake, vitamin D levels and appropriate, physical activity throughout their lives. Recommendations relevant to all stages of life include: daily dietary calcium intakes should be consistent with Australian and New Zealand guidelines serum levels of vitamin D in the general population should be above 50 nmol/L in winter or early spring for optimal bone health regular weight-bearing physical activity, Muscle strengthening exercises and challenging balance/ mobility activities should be conducted in a safe environment.