235 resultados para graphical authentication


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a commercial environment, it is advantageous to know how long it takes customers to move between different regions, how long they spend in each region, and where they are likely to go as they move from one location to another. Presently, these measures can only be determined manually, or through the use of hardware tags (i.e. RFID). Soft biometrics are characteristics that can be used to describe, but not uniquely identify an individual. They include traits such as height, weight, gender, hair, skin and clothing colour. Unlike traditional biometrics, soft biometrics can be acquired by surveillance cameras at range without any user cooperation. While these traits cannot provide robust authentication, they can be used to provide identification at long range, and aid in object tracking and detection in disjoint camera networks. In this chapter we propose using colour, height and luggage soft biometrics to determine operational statistics relating to how people move through a space. A novel average soft biometric is used to locate people who look distinct, and these people are then detected at various locations within a disjoint camera network to gradually obtain operational statistics

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: This study explored the experiences of university employees that participated in a walking intervention that encouraged individuals to walk more throughout their workday. The 10-week program was comprised of 5 phases (i.e. baseline, anticipating barriers, short planned walks, longer planned walks and maintenance) and utilized a pedometer diary and an online website for logging steps. The pedometer diary included “action plans” for addressing barriers and planning walking and the online dashboard provided graphical outputs that allowed participants to visualize whether they were reaching or exceeding their step targets. Methods: A subsample of 12 academic and administrative employees from the study completed open ended questionnaires at the end of the study. The questions focused on capturing the major themes of benefits/mediators and problems/moderators of the program and were assessed using phenomenological approaches. Results: Participants found a raised consciousness of physical inactivity throughout the work day. They also found it useful to have a graphical display of physical activity patterns, but found time constraints and lack of managerial support to be the primary barriers/moderators of the program. Those most likely to withdraw from the program experienced technical difficulties with objective monitors and the online website. Conclusions: Findings highlight the value in being involved in a group forum and provide insights into the challenges of supporting such programs within the workplace.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Appearance-based localization can provide loop closure detection at vast scales regardless of accumulated metric error. However, the computation time and memory requirements of current appearance-based methods scale not only with the size of the environment but also with the operation time of the platform. Additionally, repeated visits to locations will develop multiple competing representations, which will reduce recall performance over time. These properties impose severe restrictions on long-term autonomy for mobile robots, as loop closure performance will inevitably degrade with increased operation time. In this paper we present a graphical extension to CAT-SLAM, a particle filter-based algorithm for appearance-based localization and mapping, to provide constant computation and memory requirements over time and minimal degradation of recall performance during repeated visits to locations. We demonstrate loop closure detection in a large urban environment with capped computation time and memory requirements and performance exceeding previous appearance-based methods by a factor of 2. We discuss the limitations of the algorithm with respect to environment size, appearance change over time and applications in topological planning and navigation for long-term robot operation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Key establishment is a crucial primitive for building secure channels in a multi-party setting. Without quantum mechanics, key establishment can only be done under the assumption that some computational problem is hard. Since digital communication can be easily eavesdropped and recorded, it is important to consider the secrecy of information anticipating future algorithmic and computational discoveries which could break the secrecy of past keys, violating the secrecy of the confidential channel. Quantum key distribution (QKD) can be used generate secret keys that are secure against any future algorithmic or computational improvements. QKD protocols still require authentication of classical communication, although existing security proofs of QKD typically assume idealized authentication. It is generally considered folklore that QKD when used with computationally secure authentication is still secure against an unbounded adversary, provided the adversary did not break the authentication during the run of the protocol. We describe a security model for quantum key distribution extending classical authenticated key exchange (AKE) security models. Using our model, we characterize the long-term security of the BB84 QKD protocol with computationally secure authentication against an eventually unbounded adversary. By basing our model on traditional AKE models, we can more readily compare the relative merits of various forms of QKD and existing classical AKE protocols. This comparison illustrates in which types of adversarial environments different quantum and classical key agreement protocols can be secure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A building information model (BIM) is an electronic repository of structured, three-dimensional data that captures both the physical and dynamic functional characteristics of a facility. In addition to its more traditional function as a tool to aid design and construction, a BIM can be used throughout the life cycle of a facility, functioning as a living database that places resources contained within the building in their spatial and temporal context. Through its comprehension of spatial relationships, a BIM can meaningfully represent and integrate previously isolated control and management systems and processes, and thereby provide a more intuitive interface to users. By placing processes in a spatial context, decision-making can be improved, with positive flow-on effects for security and efficiency. In this article, we systematically analyse the authorization requirements involved in the use of BIMs. We introduce the concept of using a BIM as a graphical tool to support spatial access control configuration and management (including physical access control). We also consider authorization requirements for regulating access to the structured data that exists within a BIM as well as to external systems and data repositories that can be accessed via the BIM interface. With a view to addressing these requirements we present a survey of relevant spatiotemporal access control models, focusing on features applicable to BIMs and highlighting capability gaps. Finally, we present a conceptual authorization framework that utilizes BIMs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the context of increasing demand for potable water and the depletion of water resources, stormwater is a logical alternative. However, stormwater contains pollutants, among which metals are of particular interest due to their toxicity and persistence in the environment. Hence, it is imperative to remove toxic metals in stormwater to the levels prescribed by drinking water guidelines for potable use. Consequently, various techniques have been proposed, among which sorption using low cost sorbents is economically viable and environmentally benign in comparison to other techniques. However, sorbents show affinity towards certain toxic metals, which results in poor removal of other toxic metals. It was hypothesised in this study that a mixture of sorbents that have different metal affinity patterns can be used for the efficient removal of a range of toxic metals commonly found in stormwater. The performance of six sorbents in the sorption of Al, Cr, Cu, Pb, Ni, Zn and Cd, which are the toxic metals commonly found in urban stormwater, was investigated to select suitable sorbents for creating the mixtures. For this purpose, a multi criteria analytical protocol was developed using the decision making methods: PROMETHEE (Preference Ranking Organisation METHod for Enrichment Evaluations) and GAIA (Graphical Analysis for Interactive Assistance). Zeolite and seaweed were selected for the creation of trial mixtures based on their metal affinity pattern and the performance on predetermined selection criteria. The metal sorption mechanisms employed by seaweed and zeolite were defined using kinetics, isotherm and thermodynamics parameters, which were determined using the batch sorption experiments. Additionally, the kinetics rate-limiting steps were identified using an innovative approach using GAIA and Spearman correlation techniques developed as part of the study, to overcome the limitation in conventional graphical methods in predicting the degree of contribution of each kinetics step in limiting the overall metal removal rate. The sorption kinetics of zeolite was found to be primarily limited by intraparticle diffusion followed by the sorption reaction steps, which were governed mainly by the hydrated ionic diameter of metals. The isotherm study indicated that the metal sorption mechanism of zeolite was primarily of a physical nature. The thermodynamics study confirmed that the energetically favourable nature of sorption increased in the order of Zn < Cu < Cd < Ni < Pb < Cr < Al, which is in agreement with metal sorption affinity of zeolite. Hence, sorption thermodynamics has an influence on the metal sorption affinity of zeolite. On the other hand, the primary kinetics rate-limiting step of seaweed was the sorption reaction process followed by intraparticle diffusion. The boundary layer diffusion was also found to limit the metal sorption kinetics at low concentration. According to the sorption isotherm study, Cd, Pb, Cr and Al were sorbed by seaweed via ion exchange, whilst sorption of Ni occurred via physisorption. Furthermore, ionic bonding is responsible for the sorption of Zn. The thermodynamics study confirmed that sorption by seaweed was energetically favourable in the order of Zn < Cu < Cd < Cr . Al < Pb < Ni. However, this did not agree with the affinity series derived for seaweed suggesting a limited influence of sorption thermodynamics on metal affinity for seaweed. The investigation of zeolite-seaweed mixtures indicated that mixing sorbents have an effect on the kinetics rates and the sorption affinity. Additionally, the theoretical relationships were derived to predict the boundary layer diffusion rate, intraparticle diffusion rate, the sorption reaction rate and the enthalpy of mixtures based on that of individual sorbents. In general, low coefficient of determination (R2) for the relationships between theoretical and experimental data indicated that the relationships were not statistically significant. This was attributed to the heterogeneity of the properties of sorbents. Nevertheless, in relative terms, the intraparticle diffusion rate, sorption reaction rate and enthalpy of sorption had higher R2 values than the boundary layer diffusion rate suggesting that there was some relationship between the former set of parameters of mixtures and that of sorbents. The mixture, which contained 80% of zeolite and 20% of seaweed, showed similar affinity for the sorption of Cu, Ni, Cd, Cr and Al, which was attributed to approximately similar sorption enthalpy of the metal ions. Therefore, it was concluded that the seaweed-zeolite mixture can be used to obtain the same affinity for various metals present in a multi metal system provided the metal ions have similar enthalpy during sorption by the mixture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is a need for an accurate real-time quantitative system that would enhance decision-making in the treatment of osteoarthritis. To achieve this objective, significant research is required that will enable articular cartilage properties to be measured and categorized for health and functionality without the need for laboratory tests involving biopsies for pathological evaluation. Such a system would provide the capability of access to the internal condition of the cartilage matrix and thus extend the vision-based arthroscopy that is currently used beyond the subjective evaluation of surgeons. The system required must be able to non-destructively probe the entire thickness of the cartilage and its immediate subchondral bone layer. In this thesis, near infrared spectroscopy is investigated for the purpose mentioned above. The aim is to relate it to the structure and load bearing properties of the cartilage matrix to the near infrared absorption spectrum and establish functional relationships that will provide objective, quantitative and repeatable categorization of cartilage condition outside the area of visible degradation in a joint. Based on results from traditional mechanical testing, their innovative interpretation and relationship with spectroscopic data, new parameters were developed. These were then evaluated for their consistency in discriminating between healthy viable and degraded cartilage. The mechanical and physico-chemical properties were related to specific regions of the near infrared absorption spectrum that were identified as part of the research conducted for this thesis. The relationships between the tissue's near infrared spectral response and the new parameters were modeled using multivariate statistical techniques based on partial least squares regression (PLSR). With significantly high levels of statistical correlation, the modeled relationships were demonstrated to possess considerable potential in predicting the properties of unknown tissue samples in a quick and non-destructive manner. In order to adapt near infrared spectroscopy for clinical applications, a balance between probe diameter and the number of active transmit-receive optic fibres must be optimized. This was achieved in the course of this research, resulting in an optimal probe configuration that could be adapted for joint tissue evaluation. Furthermore, as a proof-of-concept, a protocol for obtaining the new parameters from the near infrared absorption spectra of cartilage was developed and implemented in a graphical user interface (GUI)-based software, and used to assess cartilage-on-bone samples in vitro. This conceptual implementation has been demonstrated, in part by the individual parametric relationship with the near infrared absorption spectrum, the capacity of the proposed system to facilitate real-time, non-destructive evaluation of cartilage matrix integrity. In summary, the potential of the optical near infrared spectroscopy for evaluating articular cartilage and bone laminate has been demonstrated in this thesis. The approach could have a spin-off for other soft tissues and organs of the body. It builds on the earlier work of the group at QUT, enhancing the near infrared component of the ongoing research on developing a tool for cartilage evaluation that goes beyond visual and subjective methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many common diseases, such as the flu and cardiovascular disease, increase markedly in winter and dip in summer. These seasonal patterns have been part of life for millennia and were first noted in ancient Greece by both Hippocrates and Herodotus. Recent interest has focused on climate change, and the concern that seasons will become more extreme with harsher winter and summer weather. We describe a set of R functions designed to model seasonal patterns in disease. We illustrate some simple descriptive and graphical methods, a more complex method that is able to model non-stationary patterns, and the case–crossover for controlling for seasonal confounding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Contemporary mathematics education attempts to instil within learners the conceptualization of mathematics as a highly organized and inter-connected set of ideas. To support this, a means to graphically represent this organization of ideas is presented which reflects the cognitive mechanisms that shape a learner’s understanding. This organisation of information may then be analysed, with the view to informing the design of mathematics instruction in face-to-face and/or computer-mediated learning environments. However, this analysis requires significant work to develop both theory and practice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Process modelling – the design and use of graphical documentations of an organisation’s business processes – is a key method to document and use information about business processes in organisational projects. Still, despite current interest in process modelling, this area of study still faces essential challenges. One of the key unanswered questions concerns the impact of process modelling in organisational practice. Process modelling initiatives call for tangible results in the form of returns on the substantial investments that organisations undertake to achieve improved processes. This study explores the impact of process model use on end-users and its contribution to organisational success. We posit that the use of conceptual models creates impact in organisational process teams. We also report on a set of case studies in which we explore tentative evidence for the development of impact of process model use. The results of this work provide a better understanding of process modelling impact from information practices and also lead to insights into how organisations should conduct process modelling initiatives in order to achieve an optimum return on their investment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of Trusted Platform Module (TPM) is be- coming increasingly popular in many security sys- tems. To access objects protected by TPM (such as cryptographic keys), several cryptographic proto- cols, such as the Object Specific Authorization Pro- tocol (OSAP), can be used. Given the sensitivity and the importance of those objects protected by TPM, the security of this protocol is vital. Formal meth- ods allow a precise and complete analysis of crypto- graphic protocols such that their security properties can be asserted with high assurance. Unfortunately, formal verification of these protocols are limited, de- spite the abundance of formal tools that one can use. In this paper, we demonstrate the use of Coloured Petri Nets (CPN) - a type of formal technique, to formally model the OSAP. Using this model, we then verify the authentication property of this protocol us- ing the state space analysis technique. The results of analysis demonstrates that as reported by Chen and Ryan the authentication property of OSAP can be violated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

miRDeep and its varieties are widely used to quantify known and novel micro RNA (miRNA) from small RNA sequencing (RNAseq). This article describes miRDeep*, our integrated miRNA identification tool, which is modeled off miRDeep, but the precision of detecting novel miRNAs is improved by introducing new strategies to identify precursor miRNAs. miRDeep* has a user-friendly graphic interface and accepts raw data in FastQ and Sequence Alignment Map (SAM) or the binary equivalent (BAM) format. Known and novel miRNA expression levels, as measured by the number of reads, are displayed in an interface, which shows each RNAseq read relative to the pre-miRNA hairpin. The secondary pre-miRNA structure and read locations for each predicted miRNA are shown and kept in a separate figure file. Moreover, the target genes of known and novel miRNAs are predicted using the TargetScan algorithm, and the targets are ranked according to the confidence score. miRDeep* is an integrated standalone application where sequence alignment, pre-miRNA secondary structure calculation and graphical display are purely Java coded. This application tool can be executed using a normal personal computer with 1.5 GB of memory. Further, we show that miRDeep* outperformed existing miRNA prediction tools using our LNCaP and other small RNAseq datasets. miRDeep* is freely available online at http://www.australianprostatecentre.org/research/software/mirdeep-star

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The challenge of persistent appearance-based navigation and mapping is to develop an autonomous robotic vision system that can simultaneously localize, map and navigate over the lifetime of the robot. However, the computation time and memory requirements of current appearance-based methods typically scale not only with the size of the environment but also with the operation time of the platform; also, repeated revisits to locations will develop multiple competing representations which reduce recall performance. In this paper we present a solution to the persistent localization, mapping and global path planning problem in the context of a delivery robot in an office environment over a one-week period. Using a graphical appearance-based SLAM algorithm, CAT-Graph, we demonstrate constant time and memory loop closure detection with minimal degradation during repeated revisits to locations, along with topological path planning that improves over time without using a global metric representation. We compare the localization performance of CAT-Graph to openFABMAP, an appearance-only SLAM algorithm, and the path planning performance to occupancy-grid based metric SLAM. We discuss the limitations of the algorithm with regard to environment change over time and illustrate how the topological graph representation can be coupled with local movement behaviors for persistent autonomous robot navigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To protect the health information security, cryptography plays an important role to establish confidentiality, authentication, integrity and non-repudiation. Keys used for encryption/decryption and digital signing must be managed in a safe, secure, effective and efficient fashion. The certificate-based Public Key Infrastructure (PKI) scheme may seem to be a common way to support information security; however, so far, there is still a lack of successful large-scale certificate-based PKI deployment in the world. In addressing the limitations of the certificate-based PKI scheme, this paper proposes a non-certificate-based key management scheme for a national e-health implementation. The proposed scheme eliminates certificate management and complex certificate validation procedures while still maintaining security. It is also believed that this study will create a new dimension to the provision of security for the protection of health information in a national e-health environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasing use of computerized systems in our daily lives creates new adversarial opportunities for which complex mechanisms are exploited to mend the rapid development of new attacks. Behavioral Biometrics appear as one of the promising response to these attacks. But it is a relatively new research area, specific frameworks for evaluation and development of behavioral biometrics solutions could not be found yet. In this paper we present a conception of a generic framework and runtime environment which will enable researchers to develop, evaluate and compare their behavioral biometrics solutions with repeatable experiments under the same conditions with the same data.