209 resultados para fracture healing
Resumo:
Background: normal ageing processes impact on oropharyngeal swallowing function placing older adults at risk of developing oropharyngeal dysphagia (OD). Anecdotal clinical experience has observed that older patients recovering from hip fracture surgery commonly develop OD post-operatively. Objective: to document the presence of OD following hip fracture surgery, and the factors associated with OD. Methods: one hundred and eighty-one patients with a mean age of 83 years (range: 65–103) admitted to a specialised orthogeriatric unit were assessed for OD post-surgery for hip fracture. Pre-admission, intra-operative and post-operative factors were examined to determine their relationship with the presence of OD. Results: OD was found to be present post-operatively in 34% (n = 61) of the current population. Multivariate logistic regression analyses revealed the presence of pre-existing neurological and respiratory medical co-morbidities, presence of post-operative delirium, age and living in a residential aged care facility prior to hospital admission to be associated with the post-operative OD. Conclusion: these results highlight that OD is present in a large number of the older hip fracture population. Early identification of OD has important implications for the provision of timely dysphagia management that may prevent secondary complications and potentially reduce the hospital length of stay.
Resumo:
A number of mathematical models investigating certain aspects of the complicated process of wound healing are reported in the literature in recent years. However, effective numerical methods and supporting error analysis for the fractional equations which describe the process of wound healing are still limited. In this paper, we consider the numerical simulation of a fractional mathematical model of epidermal wound healing (FMM-EWH), which is based on the coupled advection-diffusion equations for cell and chemical concentration in a polar coordinate system. The space fractional derivatives are defined in the Left and Right Riemann-Liouville sense. Fractional orders in the advection and diffusion terms belong to the intervals (0, 1) or (1, 2], respectively. Some numerical techniques will be used. Firstly, the coupled advection-diffusion equations are decoupled to a single space fractional advection-diffusion equation in a polar coordinate system. Secondly, we propose a new implicit difference method for simulating this equation by using the equivalent of Riemann-Liouville and Grünwald-Letnikov fractional derivative definitions. Thirdly, its stability and convergence are discussed, respectively. Finally, some numerical results are given to demonstrate the theoretical analysis.
Resumo:
Different types of defects can be introduced into graphene during material synthesis, and significantly influence the properties of graphene. In this work, we investigated the effects of structural defects, edge functionalisation and reconstruction on the fracture strength and morphology of graphene by molecular dynamics simulations. The minimum energy path analysis was conducted to investigate the formation of Stone-Wales defects. We also employed out-of-plane perturbation and energy minimization principle to study the possible morphology of graphene nanoribbons with edge-termination. Our numerical results show that the fracture strength of graphene is dependent on defects and environmental temperature. However, pre-existing defects may be healed, resulting in strength recovery. Edge functionalization can induce compressive stress and ripples in the edge areas of graphene nanoribbons. On the other hand, edge reconstruction contributed to the tensile stress and curved shape in the graphene nanoribbons.
Resumo:
Finite Element modelling of bone fracture fixation systems allows computational investigation of the deformation response of the bone to load. Once validated, these models can be easily adapted to explore changes in design or configuration of a fixator. The deformation of the tissue within the fracture gap determines its healing and is often summarised as the stiffness of the construct. FE models capable of reproducing this behaviour would provide valuable insight into the healing potential of different fixation systems. Current model validation techniques lack depth in 6D load and deformation measurements. Other aspects of the FE model creation such as the definition of interfaces between components have also not been explored. This project investigated the mechanical testing and FE modelling of a bone– plate construct for the determination of stiffness. In depth 6D measurement and analysis of the generated forces, moments and movements showed large out of plane behaviours which had not previously been characterised. Stiffness calculated from the interfragmentary movement was found to be an unsuitable summary parameter as the error propagation is too large. Current FE modelling techniques were applied in compression and torsion mimicking the experimental setup. Compressive stiffness was well replicated, though torsional stiffness was not. The out of plane behaviours prevalent in the experimental work were not replicated in the model. The interfaces between the components were investigated experimentally and through modification to the FE model. Incorporation of the interface modelling techniques into the full construct models had no effect in compression but did act to reduce torsional stiffness bringing it closer to that of the experiment. The interface definitions had no effect on out of plane behaviours, which were still not replicated. Neither current nor novel FE modelling techniques were able to replicate the out of plane behaviours evident in the experimental work. New techniques for modelling loads and boundary conditions need to be developed to mimic the effects of the entire experimental system.
Resumo:
Since the late 1970s, there has been a significant expansion in techniques for using mediated interactions between offenders and those affected by their behaviour. This trend began with juvenile justice conferencing, family group conferencing and Indigenous sentencing circles. The umbrella term used to describe these techniques and processes is ‘restorative justice’ (‘RJ’ to its fans and practitioners).Two important catalysts for this expansion were an increased awareness of the marginalisation of victims in the criminal justice system, and concerns over climbing recidivism rates.
Resumo:
Injured bone initiates the healing process by forming a blood clot at the damaged site. However, in severe damage, synthetic bone implants are used to provide structural integrity and restore the healing process. The implant unavoidably comes into direct contact with whole blood, leading to a blood clot formation on its surface. Despite this, most research in bone tissue engineering virtually ignores the important role of a blood clot in supporting healing. Surface chemistry of a biomaterial is a crucial property in mediating blood-biomaterials interactions, and hence the formation of the resultant blood clot. Surfaces presenting mixtures of functional groups carboxyl (–COOH) and methyl (–CH3) have been shown to enhance platelet response and coagulation activation, leading to the formation of fibrin fibres. In addition, it has been shown that varying the compositions of these functional groups and the length of alkyl groups further modulate the immune complement response. In this study, we hypothesised that a biomaterial surface with mixture of –COOH/–CH3(methyl), –CH2CH3 (ethyl) or –(CH2)3CH3 (butyl) groups at different ratios would modulate blood coagulation and complement activation, and eventually tailor the structural and functional properties of the blood clot formed on the surface, which subsequently impacts new bone formation. Firstly, we synthesised a series of materials composed of acrylic acid (AA), and methyl (MMA), ethyl (EMA) or butyl methacrylates (BMA) at different ratios and coated on the inner surfaces of incubation vials. Our surface analysis showed that the amount of –COOH groups on the surface coatings was lower than the ratios of AA prepared in the materials even though the surface content of –COOH groups increased with increasing in AA ratios. It was indicated that the surface hydrophobicity increased with increasing alkyl chain length: –CH 3 > –CH2CH3 > –(CH2)3CH3, and decreased with increasing –COOH groups. No significant differences in surface hydrophobicity was found on surfaces with –CH3 and –CH2CH3 groups in the presence of –COOH groups. The material coating was as smooth as uncoated glass and without any major flaws. The average roughness of material-coated surface (3.99 ± 0.54 nm) was slightly higher than that of uncoated glass surface (2.22 ± 0.29 nm). However, no significant differences in surface average roughness was found among surfaces with the same functionalities at different –COOH ratios nor among surfaces with different alkyl groups but the same –COOH ratios. These suggested that the surface functional groups and their compositions had a combined effect on modulating surface hydrophobicity but not surface roughness. The second part of our study was to investigate the effect of surface functional groups and their compositions on blood cascade activation and structural properties of the formed clots. It was found that surfaces with –COOH/–(CH2)3CH3 induced a faster coagulation activation than those with –COOH/–CH3 and –CH2CH3, regardless of the –COOH ratios. An increase in –COOH ratios on –COOH/–CH3 and –CH2CH3 surfaces decreased the rate of activation. Moreover, all material-coated surfaces markedly reduced the complement activation compared to uncoated glass surfaces, and the pattern of complement activation was entirely similar to that of surface-induced coagulation, suggesting there is an interaction between two cascades. The clots formed on material-coated surfaces had thicker fibrin with a tighter network at the exterior when compared to uncoated glass surfaces. Compared to the clot exteriors, thicker fibrins with a loose network were found in clot interiors. Coated surfaces resulted in more rigid clots with a significantly slower fibrinolysis after 1 h of lysis when compared to uncoated glass surfaces. Significant differences in fibrinolysis after 1 h of lysis among clots on material-coated surfaces correlated well with the differences in fibrin thickness and density at clot exterior. In addition, more growth factors were released during clot formation than during clot lysis. From an intact clot, there was a correlation between the amount of PDGF-AB release and fibrin density. Highest amount of PDGF-AB was released from clots formed on surfaces with 40% –COOH/60% –CH 3 (i.e. 65MMA). During clot lysis, the release of PDGF-AB also correlated with the fibrinolytic rate while the release of TGF-â1 was influenced by the fibrin thickness. This suggested that different clot structures led to different release profiles of growth factors in clot intact and degrading stages. We further validated whether the clots formed on material-coatings provide the microenvironment for improved bone healing by using a rabbit femoral defect model. In this pilot study, the implantation of clots formed on 65MMA coatings significantly increased new bone formation with enhanced chondrogenesis, osteoblasts activity and vascularisation, but decreased inflammatory macrophage number at the defects after 4 weeks when compared to commercial bone grafts ChronOSTM â-TCP granules. Empty defects were observed when blood clot formation was inhibited. In summary, our study demonstrated that surface functional groups and their relative ratios on material coatings synergistically modulate activation of blood cascades, resultant fibrin architecture, rigidity, susceptibility to fibrinolysis as well as growth factor release of the formed clots, which ultimately alter the healing microenvironment of injured bones.
Resumo:
Runt related transcription factor 2 (RUNX2) is a key regulator of osteoblast differentiation. Several variations within RUNX2 have been found to be associated with significant changes in BMD, which is a major risk factor for fracture. In this study we report that an 18bp deletion within the polyalanine tract (17A>11A) of RUNX2 is significantly associated with fracture. Carriers of the 11A allele were found to be nearly twice as likely to have sustained fracture. Within the fracture category, there was a significant tendency of 11A carriers to present with fractures of bones of intramembranous origin compared to bones of endochondral origin (p=0.005). In a population of random subjects, the 11A allele was associated with decreased levels of serum collagen cross links (CTx, p=0.01), suggesting decreased bone turnover. The transactivation function of the 11A allele was quantitatively decreased. Interestingly, we found no effect of the 11A allele on BMD at multiple skeletal sites, although these were not the sites where a relationship with fracture was most evident. These findings suggest that the 11A allele is a biologically relevant polymorphism that influences serum CTx and confers enhanced fracture risk in a site-selective manner related to intramembranous bone ossification.
Resumo:
Shaft fracture at an early stage of operation is a common problem for a certain type of wind turbine. To determine the cause of shaft failure a series of experimental tests were conducted to evaluate the chemical composition and mechanical properties. A detail analysis involving macroscopic feature and microstructure analysis of the material of the shaft was also performed to have an in depth knowledge of the cause of fracture. The experimental tests and analysis results show that there are no significant differences in the material property of the main shaft when comparing it with the Standard, EN10083-3:2006. The results show that stress concentration on the shaft surface close to the critical section of the shaft due to rubbing of the annular ring and coupled with high stress concentration caused by the change of inner diameter of the main shaft are the main reasons that result in fracture of the main shaft. In addition, inhomogeneity of the main shaft micro-structure also accelerates up the fracture process of the main shaft. In addition, the theoretical calculation of equivalent stress at the end of the shaft was performed, which demonstrate that cracks can easily occur under the action of impact loads. The contribution of this paper is to provide a reference in fracture analysis of similar main shaft of wind turbines.
Resumo:
This paper proposes a new iterative method to achieve an optimally fitting plate for preoperative planning purposes. The proposed method involves integration of four commercially available software tools, Matlab, Rapidform2006, SolidWorks and ANSYS, each performing specific tasks to obtain a plate shape that fits optimally for an individual tibia and is mechanically safe. A typical challenge when crossing multiple platforms is to ensure correct data transfer. We present an example of the implementation of the proposed method to demonstrate successful data transfer between the four platforms and the feasibility of the method.
Resumo:
With a hexagonal monolayer network of carbon atoms, graphene has demonstrated exceptional electrical 22 and mechanical properties. In this work, the fracture of graphene sheets with Stone–Wales type defects and vacancies were investigated using molecular dynamics simulations at different temperatures. The initiation of defects via bond rotation was also investigated. The results indicate that the defects and vacancies can cause significant strength loss in graphene. The fracture strength of graphene is also affected by temperature and loading directions. The simulation results were compared with the prediction from the quantized fracture mechanics.
Resumo:
Chronic wounds are an important health problem because they are difficult to heal and treatment is often complicated, lengthy and expensive. For a majority of sufferers the most common outcomes are long-term immobility, infection and prolonged hospitalisation. There is therefore an urgent need for effective therapeutics that will enhance ulcer healing and patient quality of life, and will reduce healthcare costs. Studies in our laboratory have revealed elevated levels of purine catabolites in wound fluid from patients with venous leg ulcers. In particular, we have discovered that uric acid is elevated in wound fluid, with higher concentrations correlating with increased wound severity. We have also revealed a corresponding depletion in uric acid precursors, including adenosine. Further, we have revealed that xanthine oxidoreductase, the enzyme that catalyses the production of uric acid, is present at elevated levels in wound fluid. Taken together, these findings provide evidence that xanthine oxidoreductase may have a function in the formation or persistence of chronic wounds. Here we describe the potential function of xanthine oxidoreductase and uric acid accumulation in the wound site, and the effect of xanthine oxidoreductase in potentiating the inflammatory response.
Resumo:
Introduction The clinically known importance of patient sex as a major risk factor for compromised bone healing is poorly reflected in animal models. Consequently, the underlying cellular mechanisms remain elusive. Because mesenchymal stem cells (MSCs) are postulated to regulate tissue regeneration and give rise to essential differentiated cell types, they may contribute to sex-specific differences in bone healing outcomes. Methods We investigated sex-specific variations in bone healing and associated differences in MSC populations. A 1.5 mm osteotomy gap in the femora of 8 male and 8 female 12-month-old Sprague-Dawley rats was stabilized by an external fixator. Healing was analyzed in terms of biomechanical testing, bridging and callus size over time (radiography at 2, 4, and 6 weeks after surgery), and callus volume and geometry by μCT at final follow-up. MSCs were obtained from bone marrow samples of an age-matched group of 12 animals (6 per gender) and analyzed for numbers of colony-forming units (CFUs) and their capacity to differentiate and proliferate. The proportion of senescent cells was determined by β-galactosidase staining. Results Sex-specific differences were indicated by a compromised mechanical competence of the callus in females compared with males (maximum torque at failure, p = 0.028). Throughout the follow-up, the cross-sectional area of callus relative to bone was reduced in females (p ≤ 0.01), and the bridging of callus was delayed (p 2weeks = 0.041). μCT revealed a reduced callus size (p = 0.003), mineralization (p = 0.003) and polar moment of inertia (p = 0.003) in female animals. The female bone marrow contained significantly fewer MSCs, represented by low CFU numbers in both femora and tibiae (p femur = 0.017, p tibia = 0.010). Functional characteristics of male and female MSCs were similar. Conclusion Biomechanically compromised and radiographically delayed bone formation were distinctive in female rats. These differences were concomitant with a reduced number of MSCs, which may be causative for the suboptimal bone healing.
Resumo:
BACKGROUND: The intense pain and anxiety triggered by burns and their associated wound care procedures are well established in the literature. Non-pharmacological intervention is a critical component of total pain management protocols and is used as an adjunct to pharmacological analgesia. An example is virtual reality, which has been used effectively to dampen pain intensity and unpleasantness. Possible links or causal relationships between pain/anxiety/stress and burn wound healing have previously not been investigated. The purpose of this study is to investigate these relationships, specifically by determining if a newly developed multi-modal procedural preparation and distraction device (Ditto) used during acute burn wound care procedures will reduce the pain and anxiety of a child and increase the rate of re-epithelialization. METHODS/DESIGN: Children (4 to 12 years) with acute burn injuries presenting for their first dressing change will be randomly assigned to either the (1) Control group (standard distraction) or (2) Ditto intervention group (receiving Ditto, procedural preparation and Ditto distraction). It is intended that a minimum of 29 participants will be recruited for each treatment group. Repeated measures of pain intensity, anxiety, stress and healing will be taken at every dressing change until complete wound re-epithelialization. Further data collection will aid in determining patient satisfaction and cost effectiveness of the Ditto intervention, as well as its effect on speed of wound re-epithelialization. DISCUSSION: Results of this study will provide data on whether the disease process can be altered by reducing stress, pain and anxiety in the context of acute burn wounds. TRIAL REGISTRATION: ACTRN12611000913976.
Resumo:
Early to mid-term fetuses heal cutaneous incisional wounds without scars; however, fetal response to burn injury has not been ascertained. We present a fetal model of thermal injury and subsequent analysis of fetal and lamb response to burn injury. A reproducible deep dermal burn injury was created in the fetus by application of water at 66 degrees C for 7 seconds, and at 82 degrees C for 10 seconds to the lamb. Macroscopically, the area of fetal scald was undetectable from day 7 post injury, while all lamb scalds were readily identified and eventually healed with scarring. Using a five-point histopathology scoring system for alteration in tissue morphology, differences were detected between control and scalded skin at all stages in lamb postburn, but no difference was detected in the fetal model after day 7. There were also large differences in content of alpha-smooth muscle actin and transforming growth factor-beta1 between control and scalded lamb and these differences were statistically significant at day 14 (P < 0.01). This novel model of fetal and lamb response to deep dermal injury indicates that the fetus heals a deep burn injury in a scarless fashion. Further elucidation of this specific fetal process of burn injury repair may lead to improved outcome for patients with burn injury.
Resumo:
Burn-wound healing is a dynamic, interactive process involving a number of cellular and molecular events and is characterized by inflammation, granulation tissue formation, re-epithelialization, and tissue remodeling (Greenhalgh, 2002; Linares, 2002). Unlike incisional-wound healing, it also requires extensive re-epithelialization due to a predominant horizontal loss of tissue and often heals with abnormal scarring when burns involve deep dermis. The early mammalian fetus has the remarkable ability to regenerate normal epidermis and dermis and to heal dermal incisional wounds with no signs of scarring. Extensive research has indicated that scarless healing appears to be intrinsic to fetal skin (McCallion and Ferguson, 1996; Ferguson and O’Kane, 2004). Previously, we reported a fetal burn model, in which 80-day-old ovine fetuses (gestation¼ 145–153 days) healed deep dermal partial thickness burns without scars, whereas postnatal lambs healed equal depth burns with significant scarring (Cuttle et al., 2005; Fraser et al., 2005). This burn model provided early evidence that fetal skin has the capacity to repair and restore dermal horizontal loss, not just vertical injuries.