194 resultados para electricity distribution networks


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peak electricity demand requires substantial investment to update transmission, distribution and generation infrastructure. A successful community peak demand reduction project was examined to identify residential consumer motivational and contextual factors involved in their decision to adopt/not adopt interventions. Energy professionals actively worked to achieve community 'peer' membership and by becoming a trusted information source, facilitated voluntary home energy assessment requests from over 80% of the residential community. By combining and tailoring interventions to the specific needs and motivations of individual householders and the community, interventions promoting energy conservation and efficiency can be effective in achieving sustained reduction in peak demand.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A theoretical basis is required for comparing key features and critical elements in wild fisheries and aquaculture supply chains under a changing climate. Here we develop a new quantitative metric that is analogous to indices used to analyse food-webs and identify key species. The Supply Chain Index (SCI) identifies critical elements as those elements with large throughput rates, as well as greater connectivity. The sum of the scores for a supply chain provides a single metric that roughly captures both the resilience and connectedness of a supply chain. Standardised scores can facilitate cross-comparisons both under current conditions as well as under a changing climate. Identification of key elements along the supply chain may assist in informing adaptation strategies to reduce anticipated future risks posed by climate change. The SCI also provides information on the relative stability of different supply chains based on whether there is a fairly even spread in the individual scores of the top few key elements, compared with a more critical dependence on a few key individual supply chain elements. We use as a case study the Australian southern rock lobster Jasus edwardsii fishery, which is challenged by a number of climate change drivers such as impacts on recruitment and growth due to changes in large-scale and local oceanographic features. The SCI identifies airports, processors and Chinese consumers as the key elements in the lobster supply chain that merit attention to enhance stability and potentially enable growth. We also apply the index to an additional four real-world Australian commercial fishery and two aquaculture industry supply chains to highlight the utility of a systematic method for describing supply chains. Overall, our simple methodological approach to empirically-based supply chain research provides an objective method for comparing the resilience of supply chains and highlighting components that may be critical.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Renewable energy is commonly considered a technological addition to urban environments. By contrast, this PhD used a holistic approach to develop a design framework for integrating local electricity production into the ecological function and cultural use of public space. The framework addresses social engagement related to public interaction, and economic engagement related to the estimated quantity of electricity produced, in conjunction with environmental engagement related to the embodied energy required to construct the renewable energy infrastructure. The outcomes will contribute to social and environmental change by engaging society, enriching the local economy and increasing social networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electricity industries of New Zealand (NZ) and the Australian state of Queensland have undergone substantial structural and regulatory reform with the common intent to improve economic efficiency. Deregulation and privatisation have been key elements of the reform but have been approached differently by each jurisdiction. This study traces the link between structural and regulatory regimes and asset valuation, profits and, ultimately, pricing. The study finds that key drivers in recent price increases are the government-owned generation and retail sector in NZ and the government-owned distribution sector in Queensland. It is concluded that, contrary to the rationale for the imposition of regulatory controls in a nonmarket environment, the regulatory regimes appear to have contributed to higher rather than lower pricing structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quality of species distribution models (SDMs) relies to a large degree on the quality of the input data, from bioclimatic indices to environmental and habitat descriptors (Austin, 2002). Recent reviews of SDM techniques, have sought to optimize predictive performance e.g. Elith et al., 2006. In general SDMs employ one of three approaches to variable selection. The simplest approach relies on the expert to select the variables, as in environmental niche models Nix, 1986 or a generalized linear model without variable selection (Miller and Franklin, 2002). A second approach explicitly incorporates variable selection into model fitting, which allows examination of particular combinations of variables. Examples include generalized linear or additive models with variable selection (Hastie et al. 2002); or classification trees with complexity or model based pruning (Breiman et al., 1984, Zeileis, 2008). A third approach uses model averaging, to summarize the overall contribution of a variable, without considering particular combinations. Examples include neural networks, boosted or bagged regression trees and Maximum Entropy as compared in Elith et al. 2006. Typically, users of SDMs will either consider a small number of variable sets, via the first approach, or else supply all of the candidate variables (often numbering more than a hundred) to the second or third approaches. Bayesian SDMs exist, with several methods for eliciting and encoding priors on model parameters (see review in Low Choy et al. 2010). However few methods have been published for informative variable selection; one example is Bayesian trees (O’Leary 2008). Here we report an elicitation protocol that helps makes explicit a priori expert judgements on the quality of candidate variables. This protocol can be flexibly applied to any of the three approaches to variable selection, described above, Bayesian or otherwise. We demonstrate how this information can be obtained then used to guide variable selection in classical or machine learning SDMs, or to define priors within Bayesian SDMs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Predicting temporal responses of ecosystems to disturbances associated with industrial activities is critical for their management and conservation. However, prediction of ecosystem responses is challenging due to the complexity and potential non-linearities stemming from interactions between system components and multiple environmental drivers. Prediction is particularly difficult for marine ecosystems due to their often highly variable and complex natures and large uncertainties surrounding their dynamic responses. Consequently, current management of such systems often rely on expert judgement and/or complex quantitative models that consider only a subset of the relevant ecological processes. Hence there exists an urgent need for the development of whole-of-systems predictive models to support decision and policy makers in managing complex marine systems in the context of industry based disturbances. This paper presents Dynamic Bayesian Networks (DBNs) for predicting the temporal response of a marine ecosystem to anthropogenic disturbances. The DBN provides a visual representation of the problem domain in terms of factors (parts of the ecosystem) and their relationships. These relationships are quantified via Conditional Probability Tables (CPTs), which estimate the variability and uncertainty in the distribution of each factor. The combination of qualitative visual and quantitative elements in a DBN facilitates the integration of a wide array of data, published and expert knowledge and other models. Such multiple sources are often essential as one single source of information is rarely sufficient to cover the diverse range of factors relevant to a management task. Here, a DBN model is developed for tropical, annual Halophila and temperate, persistent Amphibolis seagrass meadows to inform dredging management and help meet environmental guidelines. Specifically, the impacts of capital (e.g. new port development) and maintenance (e.g. maintaining channel depths in established ports) dredging is evaluated with respect to the risk of permanent loss, defined as no recovery within 5 years (Environmental Protection Agency guidelines). The model is developed using expert knowledge, existing literature, statistical models of environmental light, and experimental data. The model is then demonstrated in a case study through the analysis of a variety of dredging, environmental and seagrass ecosystem recovery scenarios. In spatial zones significantly affected by dredging, such as the zone of moderate impact, shoot density has a very high probability of being driven to zero by capital dredging due to the duration of such dredging. Here, fast growing Halophila species can recover, however, the probability of recovery depends on the presence of seed banks. On the other hand, slow growing Amphibolis meadows have a high probability of suffering permanent loss. However, in the maintenance dredging scenario, due to the shorter duration of dredging, Amphibolis is better able to resist the impacts of dredging. For both types of seagrass meadows, the probability of loss was strongly dependent on the biological and ecological status of the meadow, as well as environmental conditions post-dredging. The ability to predict the ecosystem response under cumulative, non-linear interactions across a complex ecosystem highlights the utility of DBNs for decision support and environmental management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Public key authentication is the verification of the identity-public key binding, and is foundational to the security of any network. The contribution of this thesis has been to provide public key authentication for a decentralised and resource challenged network such as an autonomous Delay Tolerant Network (DTN). It has resulted in the development and evaluation of a combined co-localisation trust system and key distribution scheme evaluated on a realistic large geographic scale mobility model. The thesis also addresses the problem of unplanned key revocation and replacement without any central authority.