457 resultados para dark matter theory
Resumo:
Professional coaching is a rapidly expanding field with interdisciplinary roots and broad application. However, despite abundant prescriptive literature, research into the process of coaching, and especially life coaching, is minimal. Similarly, although learning is inherently recognised in the process of coaching, and coaching is increasingly being recognised as a means of enhancing teaching and learning, the process of learning in coaching is little understood, and learning theory makes up only a small part of the evidence-based coaching literature. In this grounded theory study of life coaches and their clients, the process of learning in life coaching across a range of coaching models is examined and explained. The findings demonstrate how learning in life coaching emerged as a process of discovering, applying and integrating self-knowledge, which culminated in the development of self. This process occurred through eight key coaching processes shared between coaches and clients and combined a multitude of learning theory.
Resumo:
The human-technology nexus is a strong focus of Information Systems (IS) research; however, very few studies have explored this phenomenon in anaesthesia. Anaesthesia has a long history of adoption of technological artifacts, ranging from early apparatus to present-day information systems such as electronic monitoring and pulse oximetry. This prevalence of technology in modern anaesthesia and the rich human-technology relationship provides a fertile empirical setting for IS research. This study employed a grounded theory approach that began with a broad initial guiding question and, through simultaneous data collection and analysis, uncovered a core category of technology appropriation. This emergent basic social process captures a central activity of anaesthestists and is supported by three major concepts: knowledge-directed medicine, complementary artifacts and culture of anaesthesia. The outcomes of this study are: (1) a substantive theory that integrates the aforementioned concepts and pertains to the research setting of anaesthesia and (2) a formal theory, which further develops the core category of appropriation from anaesthesia-specific to a broader, more general perspective. These outcomes fulfill the objective of a grounded theory study, being the formation of theory that describes and explains observed patterns in the empirical field. In generalizing the notion of appropriation, the formal theory is developed using the theories of Karl Marx. This Marxian model of technology appropriation is a three-tiered theoretical lens that examines appropriation behaviours at a highly abstract level, connecting the stages of natural, species and social being to the transition of a technology-as-artifact to a technology-in-use via the processes of perception, orientation and realization. The contributions of this research are two-fold: (1) the substantive model contributes to practice by providing a model that describes and explains the human-technology nexus in anaesthesia, and thereby offers potential predictive capabilities for designers and administrators to optimize future appropriations of new anaesthetic technological artifacts; and (2) the formal model contributes to research by drawing attention to the philosophical foundations of appropriation in the work of Marx, and subsequently expanding the current understanding of contemporary IS theories of adoption and appropriation.
Resumo:
This paper presents the stability analysis for a distribution static compensator (DSTATCOM) that operates in current control mode based on bifurcation theory. Bifurcations delimit the operating zones of nonlinear circuits and, hence, the capability to compute these bifurcations is of important interest for practical design. A control design for the DSTATCOM is proposed. Along with this control, a suitable mathematical representation of the DSTATCOM is proposed to carry out the bifurcation analysis efficiently. The stability regions in the Thevenin equivalent plane are computed for different power factors at the point of common coupling. In addition, the stability regions in the control gain space, as well as the contour lines for different Floquet multipliers are computed. It is demonstrated through bifurcation analysis that the loss of stability in the DSTATCOM is due to the emergence of a Neimark bifurcation. The observations are verified through simulation studies.
Resumo:
Agriculture's contribution to radiative forcing is principally through its historical release of carbon in soil and vegetation to the atmosphere and through its contemporary release of nitrous oxide (N2O) and methane (CHM4). The sequestration of soil carbon in soils now depleted in soil organic matter is a well-known strategy for mitigating the buildup of CO2 in the atmosphere. Less well-recognized are other mitigation potentials. A full-cost accounting of the effects of agriculture on greenhouse gas emissions is necessary to quantify the relative importance of all mitigation options. Such an analysis shows nitrogen fertilizer, agricultural liming, fuel use, N2O emissions, and CH4 fluxes to have additional significant potential for mitigation. By evaluating all sources in terms of their global warming potential it becomes possible to directly evaluate greenhouse policy options for agriculture. A comparison of temperate and tropical systems illustrates some of these options.
Resumo:
Global climate change may induce accelerated soil organic matter (SOM) decomposition through increased soil temperature, and thus impact the C balance in soils. We hypothesized that compartmentalization of substrates and decomposers in the soil matrix would decrease SOM sensitivity to temperature. We tested our hypothesis with three short-term laboratory incubations with differing physical protection treatments conducted at different temperatures. Overall, CO2 efflux increased with temperature, but responses among physical protection treatments were not consistently different. Similar respiration quotient (Q(10)) values across physical protection treatments did not support our original hypothesis that the largest Q(10) values would be observed in the treatment with the least physical protection. Compartmentalization of substrates and decomposers is known to reduce the decomposability of otherwise labile material, but the hypothesized attenuation of temperature sensitivity was not detected, and thus the sensitivity is probably driven by the thermodynamics of biochemical reactions as expressed by Arrhenius-type equations.
Resumo:
The relationship between organic matter (OM) lability and temperature sensitivity is disputed, with recent observations suggesting that responses of relatively more resistant OM to increased temperature could be greater than, equivalent to, or less than responses of relatively more labile OM. This lack of clear understanding limits the ability to forecast carbon (C) cycle responses to temperature changes. Here, we derive a novel approach (denoted Q(10-q)) that accounts for changes in OM quality during decomposition and use it to analyze data from three independent sources. Results from new laboratory soil incubations (labile Q(10-q)=2.1 +/- 0.2; more resistant Q(10-q)=3.8 +/- 0.3) and reanalysis of data from other soil incubations reported in the literature (labile Q(10-q)=2.3; more resistant Q(10-q)=3.3) demonstrate that temperature sensitivity of soil OM decomposition increases with decreasing soil OM lability. Analysis of data from a cross-site, field litter bag decomposition study (labile Q(10-q)=3.3 +/- 0.2; resistant Q(10-q)=4.9 +/- 0.2) shows that litter OM follows the same pattern, with greater temperature sensitivity for more resistant litter OM. Furthermore, the initial response of cultivated soils, presumably containing less labile soil OM (Q(10-q)=2.4 +/- 0.3) was greater than that for undisturbed grassland soils (Q(10-q)=1.7 +/- 0.1). Soil C losses estimated using this approach will differ from previous estimates as a function of the magnitude of the temperature increase and the proportion of whole soil OM comprised of compounds sensitive to temperature over that temperature range. It is likely that increased temperature has already prompted release of significant amounts of C to the atmosphere as CO2. Our results indicate that future losses of litter and soil C may be even greater than previously supposed.
Resumo:
The current paradigm in soil organic matter (SOM) dynamics is that the proportion of biologically resistant SOM will increase when total SOM decreases. Recently, several studies have focused on identifying functional pools of resistant SOM consistent with expected behaviours. Our objective was to combine physical and chemical approaches to isolate and quantify biologically resistant SOM by applying acid hydrolysis treatments to physically isolated silt- and clay-sized soil fractions. Microaggegrate-derived and easily dispersed silt- and clay-sized fractions were isolated from surface soil samples collected from six long-term agricultural experiment sites across North America. These fractions were hydrolysed to quantify the non-hydrolysable fraction, which was hypothesized to represent a functional pool of resistant SOM. Organic C and total N concentrations in the four isolated fractions decreased in the order: native > no-till > conventional-till at all sites. Concentrations of non-hydrolysable C (NHC) and N (NHN) were strongly correlated with initial concentrations, and C hydrolysability was found to be invariant with management treatment. Organic C was less hydrolysable than N, and overall, resistance to acid hydrolysis was greater in the silt-sized fractions compared with the clay-sized fractions. The acid hydrolysis results are inconsistent with the current behaviour of increasing recalcitrance with decreasing SOM content: while %NHN was greater in cultivated soils compared with their native analogues, %NHC did not increase with decreasing total organic C concentrations. The analyses revealed an interaction between biochemical and physical protection mechanisms that acts to preserve SOM in fine mineral fractions, but the inconsistency of the pool size with expected behaviour remains to be fully explained.
Impact of soil texture on the distribution of soil organic matter in physical and chemical fractions
Resumo:
Previous research on the protection of soil organic C from decomposition suggests that soil texture affects soil C stocks. However, different pools of soil organic matter (SOM) might be differently related to soil texture. Our objective was to examine how soil texture differentially alters the distribution of organic C within physically and chemically defined pools of unprotected and protected SOM. We collected samples from two soil texture gradients where other variables influencing soil organic C content were held constant. One texture gradient (16-60% clay) was located near Stewart Valley, Saskatchewan, Canada and the other (25-50% clay) near Cygnet, OH. Soils were physically fractionated into coarse- and fine-particulate organic matter (POM), silt- and clay-sized particles within microaggregates, and easily dispersed silt-and clay-sized particles outside of microaggregates. Whole-soil organic C concentration was positively related to silt plus clay content at both sites. We found no relationship between soil texture and unprotected C (coarse- and fine-POM C). Biochemically protected C (nonhydrolyzable C) increased with increasing clay content in whole-soil samples, but the proportion of nonhydrolyzable C within silt- and clay-sized fractions was unchanged. As the amount of silt or clay increased, the amount of C stabilized within easily dispersed and microaggregate-associated silt or clay fractions decreased. Our results suggest that for a given level of C inputs, the relationship between mineral surface area and soil organic matter varies with soil texture for physically and biochemically protected C fractions. Because soil texture acts directly and indirectly on various protection mechanisms, it may not be a universal predictor of whole-soil C content.
Resumo:
The relationship between soil structure and the ability of soil to stabilize soil organic matter (SOM) is a key element in soil C dynamics that has either been overlooked or treated in a cursory fashion when developing SOM models. The purpose of this paper is to review current knowledge of SOM dynamics within the framework of a newly proposed soil C saturation concept. Initially, we distinguish SOM that is protected against decomposition by various mechanisms from that which is not protected from decomposition. Methods of quantification and characteristics of three SOM pools defined as protected are discussed. Soil organic matter can be: (1) physically stabilized, or protected from decomposition, through microaggregation, or (2) intimate association with silt and clay particles, and (3) can be biochemically stabilized through the formation of recalcitrant SOM compounds. In addition to behavior of each SOM pool, we discuss implications of changes in land management on processes by which SOM compounds undergo protection and release. The characteristics and responses to changes in land use or land management are described for the light fraction (LF) and particulate organic matter (POM). We defined the LF and POM not occluded within microaggregates (53-250 mum sized aggregates as unprotected. Our conclusions are illustrated in a new conceptual SOM model that differs from most SOM models in that the model state variables are measurable SOM pools. We suggest that physicochemical characteristics inherent to soils define the maximum protective capacity of these pools, which limits increases in SOM (i.e. C sequestration) with increased organic residue inputs.
Resumo:
Governments around the world are increasingly investing in information and communications technology (ICT) as a means of improving service delivery to citizens. Government ICT adoption is also being driven by a desire to streamline information accessibility and information flows within government - both between different levels of government and between different departments at the same level. Increasing the availability of information internally and to citizens has clear and compelling benefits but it also carries risks that must be carefully managed. This talk will examine the implications of such E-government initiatives for a range of compliance obligations, with a focus on information privacy. It will review recent developments in the area of systems-based enforcement of privacy policies and the particular privacy challenges presented by the aggregation of geospatial information.