163 resultados para cluster feature
Resumo:
The speed at which target pictures are named increases monotonically as a function of prior retrieval of other exemplars of the same semantic category and is unaffected by the number of intervening items. This cumulative semantic interference effect is generally attributed to three mechanisms: shared feature activation, priming and lexical-level selection. However, at least two additional mechanisms have been proposed: (1) a 'booster' to amplify lexical-level activation and (2) retrieval-induced forgetting (RIF). In a perfusion functional Magnetic Resonance Imaging (fMRI) experiment, we tested hypotheses concerning the involvement of all five mechanisms. Our results demonstrate that the cumulative interference effect is associated with perfusion signal changes in the left perirhinal and middle temporal cortices that increase monotonically according to the ordinal position of exemplars being named. The left inferior frontal gyrus (LIFG) also showed significant perfusion signal changes across ordinal presentations; however, these responses did not conform to a monotonically increasing function. None of the cerebral regions linked with RIF in prior neuroimaging and modelling studies showed significant effects. This might be due to methodological differences between the RIF paradigm and continuous naming as the latter does not involve practicing particular information. We interpret the results as indicating priming of shared features and lexical-level selection mechanisms contribute to the cumulative interference effect, while adding noise to a booster mechanism could account for the pattern of responses observed in the LIFG.
Resumo:
How does the presence of a categorically related word influence picture naming latencies? In order to test competitive and noncompetitive accounts of lexical selection in spoken word production, we employed the picture–word interference (PWI) paradigm to investigate how conceptual feature overlap influences naming latencies when distractors are category coordinates of the target picture. Mahon et al. (2007. Lexical selection is not by competition: A reinterpretation of semantic interference and facilitation effects in the picture-word interference paradigm. Journal of Experimental Psychology. Learning, Memory, and Cognition, 33(3), 503–535. doi:10.1037/0278-7393.33.3.503) reported that semantically close distractors (e.g., zebra) facilitated target picture naming latencies (e.g., HORSE) compared to far distractors (e.g., whale). We failed to replicate a facilitation effect for within-category close versus far target–distractor pairings using near-identical materials based on feature production norms, instead obtaining reliably larger interference effects (Experiments 1 and 2). The interference effect did not show a monotonic increase across multiple levels of within-category semantic distance, although there was evidence of a linear trend when unrelated distractors were included in analyses (Experiment 2). Our results show that semantic interference in PWI is greater for semantically close than for far category coordinate relations, reflecting the extent of conceptual feature overlap between target and distractor. These findings are consistent with the assumptions of prominent competitive lexical selection models of speech production.
Resumo:
As of today, user-generated information such as online reviews has become increasingly significant for customers in decision making process. Meanwhile, as the volume of online reviews proliferates, there is an insistent demand to help the users tackle the information overload problem. In order to extract useful information from overwhelming reviews, considerable work has been proposed such as review summarization and review selection. Particularly, to avoid the redundant information, researchers attempt to select a small set of reviews to represent the entire review corpus by preserving its statistical properties (e.g., opinion distribution). However, one significant drawback of the existing works is that they only measure the utility of the extracted reviews as a whole without considering the quality of each individual review. As a result, the set of chosen reviews may consist of low-quality ones even its statistical property is close to that of the original review corpus, which is not preferred by the users. In this paper, we proposed a review selection method which takes review quality into consideration during the selection process. Specifically, we examine the relationships between product features based upon a domain ontology to capture the review characteristics based on which to select reviews that have good quality and preserve the opinion distribution as well. Our experimental results based on real world review datasets demonstrate that our proposed approach is feasible and able to improve the performance of the review selection effectively.
Resumo:
The latest generation of Deep Convolutional Neural Networks (DCNN) have dramatically advanced challenging computer vision tasks, especially in object detection and object classification, achieving state-of-the-art performance in several computer vision tasks including text recognition, sign recognition, face recognition and scene understanding. The depth of these supervised networks has enabled learning deeper and hierarchical representation of features. In parallel, unsupervised deep learning such as Convolutional Deep Belief Network (CDBN) has also achieved state-of-the-art in many computer vision tasks. However, there is very limited research on jointly exploiting the strength of these two approaches. In this paper, we investigate the learning capability of both methods. We compare the output of individual layers and show that many learnt filters and outputs of the corresponding level layer are almost similar for both approaches. Stacking the DCNN on top of unsupervised layers or replacing layers in the DCNN with the corresponding learnt layers in the CDBN can improve the recognition/classification accuracy and training computational expense. We demonstrate the validity of the proposal on ImageNet dataset.
Resumo:
Ankylosing spondylitis (AS) is a common and highly heritable inflammatory arthropathy. Although the gene HLA-B27 is almost essential for the inheritance of the condition, it alone is not sufficient to explain the pattern of familial recurrence of the disease. We have previously demonstrated suggestive linkage of AS to chromosome 2q13, a region containing the interleukin 1 (IL-1) family gene cluster, which includes several strong candidates for involvement in the disease. In the current study, we describe strong association and transmission of IL-1 family gene cluster single-nucleotide polymorphisms and haplotypes with AS.
Resumo:
- Background Falls are the most frequent adverse events that are reported in hospitals. We examined the effectiveness of individualised falls-prevention education for patients, supported by training and feedback for staff, delivered as a ward-level programme. - Methods Eight rehabilitation units in general hospitals in Australia participated in this stepped-wedge, cluster-randomised study, undertaken during a 50 week period. Units were randomly assigned to intervention or control groups by use of computer-generated, random allocation sequences. We included patients admitted to the unit during the study with a Mini-Mental State Examination (MMSE) score of more than 23/30 to receive individualised education that was based on principles of changes in health behaviour from a trained health professional, in addition to usual care. We provided information about patients' goals, feedback about the ward environment, and perceived barriers to engagement in falls-prevention strategies to staff who were trained to support the uptake of strategies by patients. The coprimary outcome measures were patient rate of falls per 1000 patient-days and the proportion of patients who were fallers. All analyses were by intention to treat. This trial is registered with the Australian New Zealand Clinical Trials registry, number ACTRN12612000877886). - Findings Between Jan 13, and Dec 27, 2013, 3606 patients were admitted to the eight units (n=1983 control period; n=1623 intervention period). There were fewer falls (n=196, 7·80/1000 patient-days vs n=380, 13·78/1000 patient-days, adjusted rate ratio 0·60 [robust 95% CI 0·42–0·94], p=0·003), injurious falls (n=66, 2·63/1000 patient-days vs 131, 4·75/1000 patient-days, 0·65 [robust 95% CI 0·42–0·88], p=0·006), and fallers (n=136 [8·38%] vs n=248 [12·51%] adjusted odds ratio 0·55 [robust 95% CI 0·38 to 0·81], p=0·003) in the intervention compared with the control group. There was no significant difference in length of stay (intervention median 11 days [IQR 7–19], control 10 days [6–18]). - Interpretation Individualised patient education programmes combined with training and feedback to staff added to usual care reduces the rates of falls and injurious falls in older patients in rehabilitation hospital-units.
Resumo:
Objective A cluster of vulvar cancer exists in young Aboriginal women living in remote communities in Arnhem Land, Australia. A genetic case–control study was undertaken involving 30 cases of invasive vulvar cancer and its precursor lesion, high-grade vulvar intraepithelial neoplasia (VIN), and 61 controls, matched for age and community of residence. It was hypothesized that this small, isolated population may exhibit increased autozygosity, implicating recessive effects as a possible mechanism for increased susceptibility to vulvar cancer. Methods Genotyping data from saliva samples were used to identify runs of homozygosity (ROH) in order to calculate estimates of genome-wide homozygosity. Results No evidence of an effect of genome-wide homozygosity on vulvar cancer and VIN in East Arnhem women was found, nor was any individual ROH found to be significantly associated with case status. This study found further evidence supporting an association between previous diagnosis of CIN and diagnosis of vulvar cancer or VIN, but found no association with any other medical history variable. Conclusions These findings do not eliminate the possibility of genetic risk factors being involved in this cancer cluster, but rather suggest that alternative analytical strategies and genetic models should be explored.
Resumo:
MicroRNAs (miRNAs) are small non-coding RNAs of 20 nt in length that are capable of modulating gene expression post-transcriptionally. Although miRNAs have been implicated in cancer, including breast cancer, the regulation of miRNA transcription and the role of defects in this process in cancer is not well understood. In this study we have mapped the promoters of 93 breast cancer-associated miRNAs, and then looked for associations between DNA methylation of 15 of these promoters and miRNA expression in breast cancer cells. The miRNA promoters with clearest association between DNA methylation and expression included a previously described and a novel promoter of the Hsa-mir-200b cluster. The novel promoter of the Hsa-mir-200b cluster, denoted P2, is located 2 kb upstream of the 5′ stemloop and maps within a CpG island. P2 has comparable promoter activity to the previously reported promoter (P1), and is able to drive the expression of miR-200b in its endogenous genomic context. DNA methylation of both P1 and P2 was inversely associated with miR-200b expression in eight out of nine breast cancer cell lines, and in vitro methylation of both promoters repressed their activity in reporter assays. In clinical samples, P1 and P2 were differentially methylated with methylation inversely associated with miR-200b expression. P1 was hypermethylated in metastatic lymph nodes compared with matched primary breast tumours whereas P2 hypermethylation was associated with loss of either oestrogen receptor or progesterone receptor. Hypomethylation of P2 was associated with gain of HER2 and androgen receptor expression. These data suggest an association between miR-200b regulation and breast cancer subtype and a potential use of DNA methylation of miRNA promoters as a component of a suite of breast cancer biomarkers.
Resumo:
Ankylosing spondylitis (AS), the prototypic seronegative arthropathy, is known to be highly heritable, with >90% of the risk of developing the disease determined genetically. As with most common heritable diseases, progress in identifying the genes involved using family-based or candidate gene approaches has been slow. The recent development of the genome-wide association study approach has revolutionized genetic studies of such diseases. Early studies in ankylosing spondylitis have produced two major breakthroughs in the identification of genes contributing roughly one third of the population attributable risk of the disease, and pointing directly to a potential therapy. These exciting findings highlight the potential of future more comprehensive genetic studies of determinants of disease risk and clinical manifestations, and are the biggest advance in our understanding of the causation of the disease since the discovery of the association with HLA-B27.
Resumo:
Frog protection has become increasingly essential due to the rapid decline of its biodiversity. Therefore, it is valuable to develop new methods for studying this biodiversity. In this paper, a novel feature extraction method is proposed based on perceptual wavelet packet decomposition for classifying frog calls in noisy environments. Pre-processing and syllable segmentation are first applied to the frog call. Then, a spectral peak track is extracted from each syllable if possible. Track duration, dominant frequency and oscillation rate are directly extracted from the track. With k-means clustering algorithm, the calculated dominant frequency of all frog species is clustered into k parts, which produce a frequency scale for wavelet packet decomposition. Based on the adaptive frequency scale, wavelet packet decomposition is applied to the frog calls. Using the wavelet packet decomposition coefficients, a new feature set named perceptual wavelet packet decomposition sub-band cepstral coefficients is extracted. Finally, a k-nearest neighbour (k-NN) classifier is used for the classification. The experiment results show that the proposed features can achieve an average classification accuracy of 97.45% which outperforms syllable features (86.87%) and Mel-frequency cepstral coefficients (MFCCs) feature (90.80%).
Resumo:
Selection criteria and misspecification tests for the intra-cluster correlation structure (ICS) in longitudinal data analysis are considered. In particular, the asymptotical distribution of the correlation information criterion (CIC) is derived and a new method for selecting a working ICS is proposed by standardizing the selection criterion as the p-value. The CIC test is found to be powerful in detecting misspecification of the working ICS structures, while with respect to the working ICS selection, the standardized CIC test is also shown to have satisfactory performance. Some simulation studies and applications to two real longitudinal datasets are made to illustrate how these criteria and tests might be useful.
Resumo:
Breast cancer incidence and mortality rates are increasing despite our current knowledge on the disease. Ninety-five percent of breast cancer cases correspond to sporadic forms of the disease and are believed to involve an interaction between environmental and genetic determinants. The microRNA 17–92 cluster host gene (MIR17HG) has been shown to regulate expression of genes involved in breast cancer development and progression. Study of single-nucleotide polymorphisms (SNPs) located in this cluster gene could help provide a further understanding of its role in breast cancer. Therefore, this study investigated six SNPs in the MIR17HG using two independent Australian Caucasian case–control populations (GRC-BC and GU-CCQ BB populations) to determine association to breast cancer susceptibility. Genotyping was undertaken using chip-based matrix assisted laser desorption ionisation time-of-flight (MALDI-TOF) mass spectrometry (MS). We found significant association between rs4824505 and breast cancer at the allelic level in both study cohorts (GRC-BC p = 0.01 and GU-CCQ BB p = 0.03). Furthermore, haplotypic analysis of results from our combined population determined a significant association between rs4824505/rs7336610 and breast cancer susceptibility (p = 5 × 10−4). Our study is the first to show that the A allele of rs4824505 and the AC haplotype of rs4824505/rs7336610 are associated with risk of breast cancer development. However, definitive validation of this finding requires larger cohorts or populations in different ethnical backgrounds. Finally, functional studies of these SNPs could provide a deeper understanding of the role that MIR17HG plays in the pathophysiology of breast cancer.
Resumo:
Introduction: Apathy, agitated behaviours, loneliness and depression are common consequences of dementia. This trial aims to evaluate the effect of a robotic animal on behavioural and psychological symptoms of dementia in people with dementia living in long-term aged care. Methods and analysis: A cluster-randomised controlled trial with three treatment groups: PARO (robotic animal), Plush-Toy (non-robotic PARO) or Usual Care (Control). The nursing home sites are Australian Government approved and accredited facilities of 60 or more beds. The sites are located in South-East Queensland, Australia. A sample of 380 adults with a diagnosis of dementia, aged 60 years or older living in one of the participating facilities will be recruited. The intervention consists of three individual 15 min non-facilitated sessions with PARO or Plush- Toy per week, for a period of 10 weeks. The primary outcomes of interest are improvement in agitation, mood states and engagement. Secondary outcomes include sleep duration, step count, change in psychotropic medication use, change in treatment costs, and staff and family perceptions of PARO or Plush-Toy. Video data will be analysed using Noldus XT Pocket Observer; descriptive statistics will be used for participants’ demographics and outcome measures; cluster and individual level analyses to test all hypotheses and Generalised Linear Models for cluster level and Generalised Estimation Equations and/or Multi-level Modeling for individual level data. Ethics and dissemination: The study participants or their proxy will provide written informed consent. The Griffith University Human Research Ethics Committee has approved the study (NRS/03/14/HREC). The results of the study will provide evidence of the efficacy of a robotic animal as a psychosocial treatment for the behavioural and psychological symptoms of dementia. Findings will be presented at local and international conference meetings and published in peer-reviewed journals.
Resumo:
Background: Falls among hospitalised patients impose a considerable burden on health systems globally and prevention is a priority. Some patient-level interventions have been effective in reducing falls, but others have not. An alternative and promising approach to reducing inpatient falls is through the modification of the hospital physical environment and the night lighting of hospital wards is a leading candidate for investigation. In this pilot trial, we will determine the feasibility of conducting a main trial to evaluate the effects of modified night lighting on inpatient ward level fall rates. We will test also the feasibility of collecting novel forms of patient level data through a concurrent observational sub-study. Methods/design: A stepped wedge, cluster randomised controlled trial will be conducted in six inpatient wards over 14 months in a metropolitan teaching hospital in Brisbane (Australia). The intervention will consist of supplementary night lighting installed across all patient rooms within study wards. The planned placement of luminaires, configurations and spectral characteristics are based on prior published research and pre-trial testing and modification. We will collect data on rates of falls on study wards (falls per 1000 patient days), the proportion of patients who fall once or more, and average length of stay. We will recruit two patients per ward per month to a concurrent observational sub-study aimed at understanding potential impacts on a range of patient sleep and mobility behaviour. The effect on the environment will be monitored with sensors to detect variation in light levels and night-time room activity. We will also collect data on possible patient-level confounders including demographics, pre-admission sleep quality, reported vision, hearing impairment and functional status. Discussion: This pragmatic pilot trial will assess the feasibility of conducting a main trial to investigate the effects of modified night lighting on inpatient fall rates using several new methods previously untested in the context of environmental modifications and patient safety. Pilot data collected through both parts of the trial will be utilised to inform sample size calculations, trial design and final data collection methods for a subsequent main trial.