612 resultados para clinical prediction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Frequently there is a disconnectedness, either perceived or actual, between theoretical principles and laboratory practice in science education and this holds true for clinical microbiology where traditionally knowledge is delivered in ‘chunks’ in a lecture format with the misguided belief that students have to know ‘everything about everything’. This preoccupation with content delivery often leaves no time for active class discussion or reflection. Moreover, laboratory classes are treated as add-ons to the process, rather than an integrated part of the whole learning experience. In redesigning our units (subjects) we have bridged the gap between the theory and practice of clinical bacteriology. In doing so, we have seen a transformation in the learning experiences of our students and in the way we teach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scoliosis is a spinal deformity that requires surgical correction in progressive cases. In order to optimize surgical outcomes, patient-specific finite element models are being developed by our group. In this paper, a single rod anterior correction procedure is simulated for a group of six scoliosis patients. For each patient, personalised model geometry was derived from low-dose CT scans, and clinically measured intra-operative corrective forces were applied. However, tissue material properties were not patient-specific, being derived from existing literature. Clinically, the patient group had a mean initial Cobb angle of 47.3 degrees, which was corrected to 17.5 degrees after surgery. The mean simulated post-operative Cobb angle for the group was 18.1 degrees. Although this represents good agreement between clinical and simulated corrections, the discrepancy between clinical and simulated Cobb angle for individual patients varied between -10.3 and +8.6 degrees, with only three of the six patients matching the clinical result to within accepted Cobb measurement error of +-5 degrees. The results of this study suggest that spinal tissue material properties play an important role in governing the correction obtained during surgery, and that patient-specific modelling approaches must address the question of how to prescribe patient-specific soft tissue properties for spine surgery simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Developing safe and sustainable road systems is a common goal in all countries. Applications to assist with road asset management and crash minimization are sought universally. This paper presents a data mining methodology using decision trees for modeling the crash proneness of road segments using available road and crash attributes. The models quantify the concept of crash proneness and demonstrate that road segments with only a few crashes have more in common with non-crash roads than roads with higher crash counts. This paper also examines ways of dealing with highly unbalanced data sets encountered in the study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Waist circumference has been identified as a valuable predictor of cardiovascular risk in children. The development of waist circumference percentiles and cut-offs for various ethnic groups are necessary because of differences in body composition. The purpose of this study was to develop waist circumference percentiles for Chinese children and to explore optimal waist circumference cut-off values for predicting cardiovascular risk factors clustering in this population.----- ----- Methods: Height, weight, and waist circumference were measured in 5529 children (2830 boys and 2699 girls) aged 6-12 years randomly selected from southern and northern China. Blood pressure, fasting triglycerides, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and glucose were obtained in a subsample (n = 1845). Smoothed percentile curves were produced using the LMS method. Receiver-operating characteristic analysis was used to derive the optimal age- and gender-specific waist circumference thresholds for predicting the clustering of cardiovascular risk factors.----- ----- Results: Gender-specific waist circumference percentiles were constructed. The waist circumference thresholds were at the 90th and 84th percentiles for Chinese boys and girls respectively, with sensitivity and specificity ranging from 67% to 83%. The odds ratio of a clustering of cardiovascular risk factors among boys and girls with a higher value than cut-off points was 10.349 (95% confidence interval 4.466 to 23.979) and 8.084 (95% confidence interval 3.147 to 20.767) compared with their counterparts.----- ----- Conclusions: Percentile curves for waist circumference of Chinese children are provided. The cut-off point for waist circumference to predict cardiovascular risk factors clustering is at the 90th and 84th percentiles for Chinese boys and girls, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estimating and predicting degradation processes of engineering assets is crucial for reducing the cost and insuring the productivity of enterprises. Assisted by modern condition monitoring (CM) technologies, most asset degradation processes can be revealed by various degradation indicators extracted from CM data. Maintenance strategies developed using these degradation indicators (i.e. condition-based maintenance) are more cost-effective, because unnecessary maintenance activities are avoided when an asset is still in a decent health state. A practical difficulty in condition-based maintenance (CBM) is that degradation indicators extracted from CM data can only partially reveal asset health states in most situations. Underestimating this uncertainty in relationships between degradation indicators and health states can cause excessive false alarms or failures without pre-alarms. The state space model provides an efficient approach to describe a degradation process using these indicators that can only partially reveal health states. However, existing state space models that describe asset degradation processes largely depend on assumptions such as, discrete time, discrete state, linearity, and Gaussianity. The discrete time assumption requires that failures and inspections only happen at fixed intervals. The discrete state assumption entails discretising continuous degradation indicators, which requires expert knowledge and often introduces additional errors. The linear and Gaussian assumptions are not consistent with nonlinear and irreversible degradation processes in most engineering assets. This research proposes a Gamma-based state space model that does not have discrete time, discrete state, linear and Gaussian assumptions to model partially observable degradation processes. Monte Carlo-based algorithms are developed to estimate model parameters and asset remaining useful lives. In addition, this research also develops a continuous state partially observable semi-Markov decision process (POSMDP) to model a degradation process that follows the Gamma-based state space model and is under various maintenance strategies. Optimal maintenance strategies are obtained by solving the POSMDP. Simulation studies through the MATLAB are performed; case studies using the data from an accelerated life test of a gearbox and a liquefied natural gas industry are also conducted. The results show that the proposed Monte Carlo-based EM algorithm can estimate model parameters accurately. The results also show that the proposed Gamma-based state space model have better fitness result than linear and Gaussian state space models when used to process monotonically increasing degradation data in the accelerated life test of a gear box. Furthermore, both simulation studies and case studies show that the prediction algorithm based on the Gamma-based state space model can identify the mean value and confidence interval of asset remaining useful lives accurately. In addition, the simulation study shows that the proposed maintenance strategy optimisation method based on the POSMDP is more flexible than that assumes a predetermined strategy structure and uses the renewal theory. Moreover, the simulation study also shows that the proposed maintenance optimisation method can obtain more cost-effective strategies than a recently published maintenance strategy optimisation method by optimising the next maintenance activity and the waiting time till the next maintenance activity simultaneously.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different from conventional methods for structural reliability evaluation, such as, first/second-order reliability methods (FORM/SORM) or Monte Carlo simulation based on corresponding limit state functions, a novel approach based on dynamic objective oriented Bayesian network (DOOBN) for prediction of structural reliability of a steel bridge element has been proposed in this paper. The DOOBN approach can effectively model the deterioration processes of a steel bridge element and predict their structural reliability over time. This approach is also able to achieve Bayesian updating with observed information from measurements, monitoring and visual inspection. Moreover, the computational capacity embedded in the approach can be used to facilitate integrated management and maintenance optimization in a bridge system. A steel bridge girder is used to validate the proposed approach. The predicted results are compared with those evaluated by FORM method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model to predict the buildup of mainly traffic-generated volatile organic compounds or VOCs (toluene, ethylbenzene, ortho-xylene, meta-xylene, and para-xylene) on urban road surfaces is presented. The model required three traffic parameters, namely average daily traffic (ADT), volume to capacity ratio (V/C), and surface texture depth (STD), and two chemical parameters, namely total suspended solid (TSS) and total organic carbon (TOC), as predictor variables. Principal component analysis and two phase factor analysis were performed to characterize the model calibration parameters. Traffic congestion was found to be the underlying cause of traffic-related VOC buildup on urban roads. The model calibration was optimized using orthogonal experimental design. Partial least squares regression was used for model prediction. It was found that a better optimized orthogonal design could be achieved by including the latent factors of the data matrix into the design. The model performed fairly accurately for three different land uses as well as five different particle size fractions. The relative prediction errors were 10–40% for the different size fractions and 28–40% for the different land uses while the coefficients of variation of the predicted intersite VOC concentrations were in the range of 25–45% for the different size fractions. Considering the sizes of the data matrices, these coefficients of variation were within the acceptable interlaboratory range for analytes at ppb concentration levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Asset health inspections can produce two types of indicators: (1) direct indicators (e.g. the thickness of a brake pad, and the crack depth on a gear) which directly relate to a failure mechanism; and (2) indirect indicators (e.g. the indicators extracted from vibration signals and oil analysis data) which can only partially reveal a failure mechanism. While direct indicators enable more precise references to asset health condition, they are often more difficult to obtain than indirect indicators. The state space model provides an efficient approach to estimating direct indicators by using indirect indicators. However, existing state space models to estimate direct indicators largely depend on assumptions such as, discrete time, discrete state, linearity, and Gaussianity. The discrete time assumption requires fixed inspection intervals. The discrete state assumption entails discretising continuous degradation indicators, which often introduces additional errors. The linear and Gaussian assumptions are not consistent with nonlinear and irreversible degradation processes in most engineering assets. This paper proposes a state space model without these assumptions. Monte Carlo-based algorithms are developed to estimate the model parameters and the remaining useful life. These algorithms are evaluated for performance using numerical simulations through MATLAB. The result shows that both the parameters and the remaining useful life are estimated accurately. Finally, the new state space model is used to process vibration and crack depth data from an accelerated test of a gearbox. During this application, the new state space model shows a better fitness result than the state space model with linear and Gaussian assumption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: To develop recommendations for the clinical education required to prepare Australian Nurse Practitioner candidates for advanced and extended practice in nephrology settings. Methods: Using the Delphi research technique a consensus statement was developed over a nine month period. All endorsed and candidate Nephrology Nurse Practitioners (NNP) were invited to participate as the expert panel. The Delphi research technique uses a systematic and iterative process. The expert panel were asked to generate a list of items which were then circulated to all NNPs. They were asked to determine their degree of agreement or disagreement with each statement using a 5-point Likert scale There was opportunity for free-text comments to be provided if desired. Results from each round were collated; the document was refined and circulated to the experts for a subsequent round. Consensus was demonstrated after three Delphi rounds. Results: The consensus statement comprises four components explaining the role and membership of the mentorship team, the setting and location of NNP clinical education, learning strategies to support the NNP, and outcomes of NNP clinical education. Demographic questions in the final survey revealed information about the qualifications, years of experience, and practice location of Australian NNPs. Conclusions: The consensus statement is not prescriptive but it will inform NNP candidates, university course providers and mentors about the expected extended nephrology specific clinical education that will enable the NNP to provide advanced nursing care for patients regardless of the stage of chronic kidney disease (CKD) and the practice setting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Significant ongoing learning needs for nurses have occurred as a direct result of the continuous introduction of technological innovations and research developments in the healthcare environment. Despite an increased worldwide emphasis on the importance of continuing education, there continues to be an absence of empirical evidence of program and session effectiveness. Few studies determine whether continuing education enhances or develops practice and the relative cost benefits of health professionals’ participation in professional development. The implications for future clinical practice and associated educational approaches to meet the needs of an increasingly diverse multigenerational and multicultural workforce are also not well documented. There is minimal research confirming that continuing education programs contribute to improved patient outcomes, nurses’ earlier detection of patient deterioration or that standards of continuing competence are maintained. Crucially, evidence-based practice is demonstrated and international quality and safety benchmarks are adhered to. An integrated clinical learning model was developed to inform ongoing education for acute care nurses. Educational strategies included the use of integrated learning approaches, interactive teaching concepts and learner-centred pedagogies. A Respiratory Skills Update education (ReSKU) program was used as the content for the educational intervention to inform surgical nurses’ clinical practice in the area of respiratory assessment. The aim of the research was to evaluate the effectiveness of implementing the ReSKU program using teaching and learning strategies, in the context of organisational utility, on improving surgical nurses’ practice in the area of respiratory assessment. The education program aimed to facilitate better awareness, knowledge and understanding of respiratory dysfunction in the postoperative clinical environment. This research was guided by the work of Forneris (2004), who developed a theoretical framework to operationalise a critical thinking process incorporating the complexities of the clinical context. The framework used educational strategies that are learner-centred and participatory. These strategies aimed to engage the clinician in dynamic thinking processes in clinical practice situations guided by coaches and educators. Methods A quasi experimental pre test, post test non–equivalent control group design was used to evaluate the impact of the ReSKU program on the clinical practice of surgical nurses. The research tested the hypothesis that participation in the ReSKU program improves the reported beliefs and attitudes of surgical nurses, increases their knowledge and reported use of respiratory assessment skills. The study was conducted in a 400 bed regional referral public hospital, the central hub of three smaller hospitals, in a health district servicing the coastal and hinterland areas north of Brisbane. The sample included 90 nurses working in the three surgical wards eligible for inclusion in the study. The experimental group consisted of 36 surgical nurses who had chosen to attend the ReSKU program and consented to be part of the study intervention group. The comparison group included the 39 surgical nurses who elected not to attend the ReSKU program, but agreed to participate in the study. Findings One of the most notable findings was that nurses choosing not to participate were older, more experienced and less well educated. The data demonstrated that there was a barrier for training which impacted on educational strategies as this mature aged cohort was less likely to take up educational opportunities. The study demonstrated statistically significant differences between groups regarding reported use of respiratory skills, three months after ReSKU program attendance. Between group data analysis indicated that the intervention group’s reported beliefs and attitudes pertaining to subscale descriptors showed statistically significant differences in three of the six subscales following attendance at the ReSKU program. These subscales included influence on nursing care, educational preparation and clinical development. Findings suggest that the use of an integrated educational model underpinned by a robust theoretical framework is a strong factor in some perceptions of the ReSKU program relating to attitudes and behaviour. There were minimal differences in knowledge between groups across time. Conclusions This study was consistent with contemporary educational approaches using multi-modal, interactive teaching strategies and a robust overarching theoretical framework to support study concepts. The construct of critical thinking in the clinical context, combined with clinical reasoning and purposeful and collective reflection, was a powerful educational strategy to enhance competency and capability in clinicians.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an approach to predict the operating conditions of machine based on classification and regression trees (CART) and adaptive neuro-fuzzy inference system (ANFIS) in association with direct prediction strategy for multi-step ahead prediction of time series techniques. In this study, the number of available observations and the number of predicted steps are initially determined by using false nearest neighbor method and auto mutual information technique, respectively. These values are subsequently utilized as inputs for prediction models to forecast the future values of the machines’ operating conditions. The performance of the proposed approach is then evaluated by using real trending data of low methane compressor. A comparative study of the predicted results obtained from CART and ANFIS models is also carried out to appraise the prediction capability of these models. The results show that the ANFIS prediction model can track the change in machine conditions and has the potential for using as a tool to machine fault prognosis.