138 resultados para boron rates
Resumo:
Direct nitrogen (N) losses from pastures contribute to the poor nitrogen use efficiency of the dairy industry, though the exact fate of applied N and the processes involved are largely unknown. Nitrification inhibitors such as DMPP can potentially increase fertilizer N use efficiency (NUE), though few studies globally have examined the effectiveness of DMPP coated urea in pastures. This study quantified the NUE of DMPP combined with reduced application rates, and the effect on N dynamics and plant–soil interactions over an annual ryegrass/kikuyu rotation in Queensland, Australia. Labeled 15N urea and DMPP was applied over 7 winter applications at standard farmer (45 kg N ha−1) and half (23 kg N ha−1) rates. Fertilizer recoveries and NUE were calculated over 13 harvests, and the contribution of fertilizer and soil N estimated. Up to 85% of the annual N harvested was from soil organic matter. DMPP at the lower rate increased annual yields by 31% compared to the equivalent urea treatment with no difference to the high N rates. Almost 40% of the N added at the conventional fertilizer application rate as urea was lost to the environment; 80 kg N ha−1 higher than the low DMPP. Combining the nitrification inhibitor DMPP with reduced fertilizer application rates shows substantial potential to reduce N losses to the environment while sustaining productivity in subtropical dairy pastures.
Resumo:
Background There is a comprehensive literature on the academic outcomes (attrition and success) of students in traditional/baccalaureate nursing programs, but much less is known about the academic outcomes of students in accelerated nursing programs. The aim of this systematic review is to report on the attrition and success rates (either internal examination or NCLEX-RN) of accelerated students, compared to traditional students. Methods For the systematic review, the databases (Pubmed, Cinahl and PsychINFO) and Google Scholar were searched using the search terms ‘accelerated’ or ‘accreditation for prior learning’, ‘fast-track’ or ‘top up’ and ‘nursing’ with ‘attrition’ or ‘retention’ or ‘withdrawal’ or ‘success’ from 1994 to January 2016. All relevant articles were included, regardless of quality. Results The findings of 19 studies of attrition rates and/or success rates for accelerated students are reported. For international accelerated students, there were only three studies, which are heterogeneous, and have major limitations. One of three studies has lower attrition rates, and one has shown higher success rates, than traditional students. In contrast, another study has shown high attrition and low success for international accelerated students. For graduate accelerated students, most of the studies are high quality, and showed that they have rates similar or better than traditional students. Thus, five of six studies have shown similar or lower attrition rates. Four of these studies with graduate accelerated students and an additional seven studies of success rates only, have shown similar or better success rates, than traditional students. There are only three studies of non-university graduate accelerated students, and these had weaknesses, but were consistent in reporting higher attrition rates than traditional students. Conclusions The paucity and weakness of information available makes it unclear as to the attrition and/or success of international accelerated students in nursing programs. The good information available suggests that accelerated programs may be working reasonably well for the graduate students. However, the limited information available for non-university graduate students is weak, but consistent, in suggesting they may struggle in accelerated courses. Further studies are needed to determine the attrition and success rates of accelerated students, particularly for international and non-university graduate students.
Resumo:
Recently, partially ionic boron (γ-B28) has been predicted and observed in pure boron, in bulk phase and controlled by pressure [Nature, 457 (2009) 863]. By using ab initio evolutionary structure search, we report the prediction of ionic boron at a reduced dimension and ambient pressure, namely, the two-dimensional (2D) ionic boron. This 2D boron structure consists of graphene-like plane and B2 atom pairs, with the P6/mmm space group and 6 atoms in the unit cell, and has lower energy than the previously reported α-sheet structure and its analogues. Its dynamical and thermal stability are confirmed by the phonon-spectrum and ab initio molecular dynamics simulation. In addition, this phase exhibits double Dirac cones with massless Dirac fermions due to the significant charge transfer between the graphene-like plane and B2 pair that enhances the energetic stability of the P6/mmm boron. A Fermi velocity (vf) as high as 2.3 x 106 m/s, which is even higher than that of graphene (0.82 x 106 m/s), is predicted for the P6/mmm boron. The present work is the first report of the 2D ionic boron at atmospheric pressure. The unique electronic structure renders the 2D ionic boron a promising 2D material for applications in nanoelectronics.