137 resultados para acoustic-optic switch
Resumo:
Acoustics is a rich source of environmental information that can reflect the ecological dynamics. To deal with the escalating acoustic data, a variety of automated classification techniques have been used for acoustic patterns or scene recognition, including urban soundscapes such as streets and restaurants; and natural soundscapes such as raining and thundering. It is common to classify acoustic patterns under the assumption that a single type of soundscapes present in an audio clip. This assumption is reasonable for some carefully selected audios. However, only few experiments have been focused on classifying simultaneous acoustic patterns in long-duration recordings. This paper proposes a binary relevance based multi-label classification approach to recognise simultaneous acoustic patterns in one-minute audio clips. By utilising acoustic indices as global features and multilayer perceptron as a base classifier, we achieve good classification performance on in-the-field data. Compared with single-label classification, multi-label classification approach provides more detailed information about the distributions of various acoustic patterns in long-duration recordings. These results will merit further biodiversity investigations, such as bird species surveys.
Resumo:
Cracks in civil structures can result in premature failure due to material degradation and can result in both financial loss and environmental consequences. This thesis reports an effective technique using Acoustic Emission (AE) technique to assess the severity of the crack propagation in steel structures. The outcome of this work confirms that combination of AE parametric analysis and signal processing techniques can be used to evaluate crack propagation under different loading configurations. The technique has potential application to assess and monitor the condition of civil structures.