261 resultados para Wild species
Resumo:
Three native freshwater crayfish Cherax species are farmed in Australia namely; Redclaw (Cherax quadricarinatus), Marron (C. tenuimanus), and Yabby (C. destructor). Lack of appropriate data on specific nutrient requirements for each of these species, however, has constrained development of specific formulated diets and hence current use of over-formulated feeds or expensive marine shrimp feeds, limit their profitability. A number of studies have investigated nutritional requirements in redclaw that have focused on replacing expensive fish meal in formulated feeds with non-protein, less expensive substitutes including plant based ingredients. Confirmation that freshwater crayfish possess endogenous cellulase genes, suggests their potential ability to utilize complex carbohydrates like cellulose as nutrient sources in their diet. To date, studies have been limited to only C. quadricarinatus and C. destructor and no studies have compared the relative ability of each species to utilize soluble cellulose in their diets. Individual feeding trials of late-juveniles of each species were conducted separately in an automated recirculating culture system over 12 week cycles. Animals were fed either a test diet (TD) that contained 20% soluble cellulose or a reference diet (RD) substituted with the same amount of corn starch. Water temperature, conductivity and pH were maintained at constant and optimum levels for each species. Animals were fed at 3% of their body weight twice daily and wet body weight was recorded bi-weekly. At the end of experiment, all animals were harvested, measured and midgut gland extracts assayed for alpha-amylase, total protease and cellulase activity levels. After the trial period, redclaw fed with RD showed significantly higher (p<0.05) specific growth rate (SGR) compare with animals fed the TD while SGR of marron and yabby fed the two diets were not significantly different (p<0.05). Cellulase expression levels in redclaw were not significantly different between diets. Marron and yabby showed significantly higher cellulase activity when fed the RD. Amylase and protease activity in all three species were significantly higher in the animals fed with RD (Table 1). These results indicate that test animals of all species can utilize starch better than dietary soluble cellulose in their diet and inclusion of 20% soluble cellulose in diets does not appear to have any significant negative effect on their growth rate but survival was impacted in C. quadricarinatus while not in C. tenuimanus or C. destructor.
Resumo:
The current study evaluated the effect of soluble dietary cellulose on growth, survival and digestive enzyme activity in three endemic, Australian freshwater crayfish species (redclaw: Cherax quadricarinatus, marron: C. tenuimanus, yabby: C. destructor). Separate individual feeding trials were conducted for late-stage juveniles from each species in an automated recirculating freshwater, culture system. Animals were fed either a test diet (TD) that contained 20% soluble cellulose or a reference diet (RD) substituted with the same amount of corn starch, over a 12 week period. Redclaw fed with RD showed significantly higher (p<0.05) specific growth rates (SGR) compared with animals fed the TD, while SGR of marron and yabby fed the two diets were not significantly different. Expressed cellulase activity levels in redclaw were not significantly different between diets. Marron and yabby showed significantly higher cellulase activity when fed the RD (p<0.05). Amylase and protease activity in all three species were significantly higher in the animals fed with RD (p<0.05). These results indicate that test animals of all three species appear to utilize starch more efficiently than soluble dietary cellulose in their diet. The inclusion of 20% soluble cellulose in diets did not appear, however, to have a significant negative effect on growth rates.
Resumo:
Purpose: We have evaluated the immunosuppressive properties of L-MSC with the view to using these cells in allogeneic cell therapies for corneal disorders. We hypothesized that L-MSC cultures would suppress T-cell activation, in a similar way to those established from human bone marrow (BM-MSC). Methods: MSC cultures were established from the limbal stroma of cadaveric donor eye tissue (up to 1 week postmortem) using either conventional serum-supplemented growth medium or a commercial serum-free medium optimized for bone marrow derived MSC (MesenCult-XF system). The MSC phenotype was examined by flow cytometry according to current and emerging markers for human MSC. Immunosuppressive properties were assessed using a mixed lymphocyte reaction (MLR) assay, whereby the white cell fraction from two immunologically incompatible blood donors are cultured together in direct contact with growth arrested MSC. T-cell activation (proliferation) was measured by uptake of tritiated thymidine. Human L-MSC were tested in parallel with human BM-MSC and rabbit L-MSC. Human and rabbit L-MSC were also tested for their ability to stimulate the growth of limbal epithelial (LE) cells in colony formation assays (for both human as well as rabbit LE cells). Results: L-MSC cultures were >95% negative for CD34, CD45 and HLA-DR and positive for CD73, CD90, CD105 and HLA-ABC. Modest levels (30%) of CD146 expression were observed for L-MSC cultures grown in serum-supplemented growth medium, but not those grown in MesenCult-XF. All MSC cultures derived from both human and rabbit tissue suppressed T-cell activation to varying degrees according to culture technique and species (MesenCult-XF >> serum-fed cultures, rabbit L-MSC >> human L-MSC). All L-MSC stimulated colony formation by LE cells irrespectively of the combination of cell species used. Conclusions: L-MSC display immunosuppressive qualities, in addition to their established non-immunogenic cell surface marker profile, and stimulate LE cell growth in vitro across species boundaries. These results support the potential use of allogeneic or even xenogeneic L-MSC in the treatment of corneal disorders.
Resumo:
Plant growth can be limited by resource acquisition and defence against consumers, leading to contrasting trade-off possibilities. The competition-defence hypothesis posits a trade-off between competitive ability and defence against enemies (e.g. herbivores and pathogens). The growth-defence hypothesis suggests that strong competitors for nutrients are also defended against enemies, at a cost to growth rate. We tested these hypotheses using observations of 706 plant populations of over 500 species before and following identical fertilisation and fencing treatments at 39 grassland sites worldwide. Strong positive covariance in species responses to both treatments provided support for a growth-defence trade-off: populations that increased with the removal of nutrient limitation (poor competitors) also increased following removal of consumers. This result held globally across 4 years within plant life-history groups and within the majority of individual sites. Thus, a growth-defence trade-off appears to be the norm, and mechanisms maintaining grassland biodiversity may operate within this constraint.
Resumo:
In this paper, we report the preparation and characterisation of nanometer-sized TiO2, CdO, and ZnO semiconductor particles trapped in zeolite NaY. Preparation of these particles was carried out via the traditional ion exchange method and subsequent calcination procedure. It was found that the smaller cations, i.e., Cd2+ and Zn2+ could be readily introduced into the SI′ and SII′ sites located in the sodalite cages, through ion exchange; while this is not the case for the larger Ti species, i.e., Ti monomer [TiO]2+ or dimer [Ti2O3]2+ which were predominantly dispersed on the external surface of zeolite NaY. The subsequent calcination procedure promoted these Ti species to migrate into the internal surface of the supercages. These semiconductor particles confined in NaY zeolite host exhibited a significant blue shift in the UV-VIS absorption spectra, in contrast to the respective bulk semiconductor materials, due to the quantum size effect (QSE). The particle sizes calculated from the UV-VIS optical absorption spectra using the effective mass approximation model are in good agreement with the atomic absorption data.
Resumo:
Freshwater prawn (Macrobrachium rosenbergii) culture in the Western Hemisphere is primarily, if not entirely, derived from 36 individual prawns originally introduced to Hawaii from Malaysia in 1965 and 1966. Little information is available regarding genetic variation within and among cultured prawn stocks worldwide. The goal of the current study was to characterize genetic diversity in various prawn populations with emphasis on those cultured in North America. Five microsatellite loci were screened to estimate genetic diversity in two wild (Myanmar and India-wild) and seven cultured (Hawaii-1, Hawaii-2, India-cultured, Israel, Kentucky, Mississippi and Texas) populations. Average allelic richness ranged from 3.96 (Israel) to 20.45 (Myanmar). Average expected heterozygosity ranged from 0.580 (Israel) to 0.935 (Myanmar). Many of the cultured populations exhibited reduced genetic diversity when compared with the Myanmar and the India-cultured populations. Significant deficiency in heterozygotes was detected in the India-cultured, Mississippi and Kentucky populations (overall Fis estimated of 0.053, 0.067 and 0.108 respectively) reflecting moderate levels of inbreeding. Overall estimate of fixation index (Fst = 0.1569) revealed moderately high levels of differentiation among the populations. Outcome of this study provide a baseline assessment of genetic diversity in some available strains that will be useful for the development of breeding programmes.
Resumo:
Hitherto, the Malaconothridae contained Malaconothrus Berlese, 1904 and Trimalaconothrus Berlese, 1916, defined by the possession of one pre-tarsal claw (monodactyly) or by three claws (tridactyly) respectively. However, monodactyly is a convergent apomorphy within the Oribatida and an unreliable character for a classification. Therefore we undertook a phylogenetic analysis of 102 species as the basis for a taxonomic review of the Malaconothridae. We identified two major clades, equivalent to the genera Tyrphonothrus Knülle, 1957 and Malaconothrus. These genera are redefined. Trimala-conothrus becomes the junior subjective synonym of Malaconothrus. Some 42 species of Trimalaconothrus are recom-bined to Malaconothrus and 15 species to Tyrphonothrus. Homonyms created by the recombinations are rectified. The replacement name M. hammerae nom. nov. is proposed for M. angulatus Hammer, 1958, the junior homonym of M. an-gulatus (Willmann, 1931) and the replacement name M. luxtoni nom. nov. is proposed for M. scutatus Luxton, 1987, the junior homonym of M. scutatus Mihelč ič, 1959. Trimalaconothrus iteratus Subías, 2004 is an unnecessary replacement name and is a junior objective synonym of Malaconothrus longirostrum (Hammer 1966). Malaconothrus praeoccupatus Subías, 2004 is a junior objective synonym of M. machadoi Balogh & Mahunka, 1969. Malaconothrus obsessus (Subías, 2004), an unnecessary replacement name for Trimalaconothrus albulus Hammer 1966 sensu Tseng 1982, becomes an available name for what is in fact a previously-undescribed species of Malaconothrus. We describe four new species of Tyrphonothrus: T. gnammaensis sp. nov. from Western Australia, T. gringai sp. nov. and T. maritimus sp. nov. from New South Wales, and T. taylori sp. nov. from Queensland. We describe six new species of Malaconothrus: M. beecroftensis sp. nov., M. darwini sp. nov. M. gundungurra sp. nov. and M. knuellei sp. nov. from New South Wales, M. jowettae sp. nov. from Norfolk Island, and M. talaitae sp. nov. from Victoria.
Resumo:
The study assessed natural levels and patterns of genetic variation in Arabian Gulf populations of a native pearl oyster to define wild population structure considering potential intrinsic and extrinsic factors that could influence any wild structure detected. The study was also the first attempt to develop microsatellite markers and to generate a genome survey sequence (GSS) dataset for the target species using next generation sequencing technology. The partial genome dataset generated has potential biotechnological applications and for pearl oyster farming in the future.
Resumo:
Understanding the evolutionary history and phylogenetic relationships between rare and common species is necessary for the effective management of rare species. The genus Cherax, a group of freshwater crayfish species, is of interest in this regard as a number of species are rare or have restricted distributions while other species are common and widespread. Here we describe the characterisation of three novel nuclear genes of the haemocyanin superfamily for phylogenetic reconstruction of the genus. All novel markers developed in this study amplified consistently in species from three divergent clades of the genus Cherax. The level of polymorphism found in these markers was consistently higher than that found in other nuclear genes previously used in invertebrate systematics, such as NaK ATP-ase. In combination, these markers will be useful to delineate phylogenetic relationships between rare and common Cherax species.
Resumo:
The T-box family transcription factor gene TBX20 acts in a conserved regulatory network, guiding heart formation and patterning in diverse species. Mouse Tbx20 is expressed in cardiac progenitor cells, differentiating cardiomyocytes, and developing valvular tissue, and its deletion or RNA interference-mediated knockdown is catastrophic for heart development. TBX20 interacts physically, functionally, and genetically with other cardiac transcription factors, including NKX2-5, GATA4, and TBX5, mutations of which cause congenital heart disease (CHD). Here, we report nonsense (Q195X) and missense (I152M) germline mutations within the T-box DNA-binding domain of human TBX20 that were associated with a family history of CHD and a complex spectrum of developmental anomalies, including defects in septation, chamber growth, and valvulogenesis. Biophysical characterization of wild-type and mutant proteins indicated how the missense mutation disrupts the structure and function of the TBX20 T-box. Dilated cardiomyopathy was a feature of the TBX20 mutant phenotype in humans and mice, suggesting that mutations in developmental transcription factors can provide a sensitized template for adult-onset heart disease. Our findings are the first to link TBX20 mutations to human pathology. They provide insights into how mutation of different genes in an interactive regulatory circuit lead to diverse clinical phenotypes, with implications for diagnosis, genetic screening, and patient follow-up.
Resumo:
Bactrocera dorsalis sensu stricto, B. papayae, B. philippinensis and B. carambolae are serious pest fruit fly species of the B. dorsalis complex that predominantly occur in south-east Asia and the Pacific. Identifying molecular diagnostics has proven problematic for these four taxa, a situation that cofounds biosecurity and quarantine efforts and which may be the result of at least some of these taxa representing the same biological species. We therefore conducted a phylogenetic study of these four species (and closely related outgroup taxa) based on the individuals collected from a wide geographic range; sequencing six loci (cox1, nad4-3′, CAD, period, ITS1, ITS2) for approximately 20 individuals from each of 16 sample sites. Data were analysed within maximum likelihood and Bayesian phylogenetic frameworks for individual loci and concatenated data sets for which we applied multiple monophyly and species delimitation tests. Species monophyly was measured by clade support, posterior probability or bootstrap resampling for Bayesian and likelihood analyses respectively, Rosenberg's reciprocal monophyly measure, P(AB), Rodrigo's (P(RD)) and the genealogical sorting index, gsi. We specifically tested whether there was phylogenetic support for the four 'ingroup' pest species using a data set of multiple individuals sampled from a number of populations. Based on our combined data set, Bactrocera carambolae emerges as a distinct monophyletic clade, whereas B. dorsalis s.s., B. papayae and B. philippinensis are unresolved. These data add to the growing body of evidence that B. dorsalis s.s., B. papayae and B. philippinensis are the same biological species, which poses consequences for quarantine, trade and pest management.
Resumo:
This study investigated potential markers within chromosomal, mitochondrial DNA (mtDNA) and ribosomal RNA (rRNA) with the aim of developing a DNA based method to allow differentiation between animal species. Such discrimination tests may have important applications in the forensic science, agriculture, quarantine and customs fields. DNA samples from five different animal individuals within the same species for 10 species of animal (including human) were analysed. DNA extraction and quantitation followed by PCR amplification and GeneScan visualisation formed the basis of the experimental analysis. Five gene markers from three different types of genes were investigated. These included genomic markers for the β-actin and TP53 tumor suppressor gene. Mitochondrial DNA markers, designed by Bataille et al. [Forensic Sci. Int. 99 (1999) 165], examined the Cytochrome b gene and Hypervariable Displacement Loop (D-Loop) region. Finally, a ribosomal RNA marker for the 28S rRNA gene optimised by Naito et al. [J. Forensic Sci. 37 (1992) 396] was used as a possible marker for speciation. Results showed a difference of only several base pairs between all species for the β-actin and 28S markers, with the exception of Sus scrofa (pig) β-actin fragment length, which produced a significantly smaller fragment. Multiplexing of Cytochrome b and D-Loop markers gave limited species information, although positive discrimination of human DNA was evident. The most specific and discriminatory results were shown using the TP53 gene since this marker produced greatest fragment size differences between animal species studied. Sample differentiation for all species was possible following TP53 amplification, suggesting that this gene could be used as a potential animal species identifier.
Resumo:
Extracts of Australian plants were screened to detect constituents affecting adenosine di-phosphate (ADP) induced platelet aggregation and [14C]5-hydroxytryptamine (5-HT) release. Extracts of four tested plants including, Eremophila gilesii, Erythrina vespertilio, Cymbopogon ambiguus, and Santalum acuminatum, were found to cause significant inhibition of platelet 5-HT release. Inhibition levels ranged from 56-98%, and was not due to the non-specific effects of protein binding tannins. These extracts, and those we have previously identified as being active, were examined further to determine if they affect epinephrine (EPN), arachidonic acid (A.A) or collagen stimulated platelet aggregation and 5-HT release. Among those extracts investigated, we found that both the methanolic extract of E. vespertilio and the dichloromethane (DCM) extract of C. ambiguus were most potent and caused significant inhibition of platelet activation induced by EPN, A.A and to a lesser extent by collagen. Inhibition of ADP induced platelet 5-HT release by both of these extracts, was dose-dependent, with IC50 values for E. vespertilio and C. ambiguus estimated to be 20.4 microl (1.855 mg/ml) and 8.34 microl (0.758 mg/ml), respectively. Overall, C. ambiguus exhibited most activity and also caused dose-dependent inhibition of A.A induced platelet activation. These results indicate that inhibition may occur specifically at a site within the A.A pathway, and suggest the presence of a cyclo-oxygenase inhibitor. Both E. vespertilio and C. ambiguus are reported to be traditional headache treatments, with the present study providing evidence that they affect 5-HT release.
Resumo:
Acoustic sensors can be used to estimate species richness for vocal species such as birds. They can continuously and passively record large volumes of data over extended periods. These data must subsequently be analyzed to detect the presence of vocal species. Automated analysis of acoustic data for large numbers of species is complex and can be subject to high levels of false positive and false negative results. Manual analysis by experienced surveyors can produce accurate results; however the time and effort required to process even small volumes of data can make manual analysis prohibitive. This study examined the use of sampling methods to reduce the cost of analyzing large volumes of acoustic sensor data, while retaining high levels of species detection accuracy. Utilizing five days of manually analyzed acoustic sensor data from four sites, we examined a range of sampling frequencies and methods including random, stratified, and biologically informed. We found that randomly selecting 120 one-minute samples from the three hours immediately following dawn over five days of recordings, detected the highest number of species. On average, this method detected 62% of total species from 120 one-minute samples, compared to 34% of total species detected from traditional area search methods. Our results demonstrate that targeted sampling methods can provide an effective means for analyzing large volumes of acoustic sensor data efficiently and accurately. Development of automated and semi-automated techniques is required to assist in analyzing large volumes of acoustic sensor data. Read More: http://www.esajournals.org/doi/abs/10.1890/12-2088.1
Resumo:
Physical and chemical properties of biodiesel are influenced by structural features of the fatty acids, such as chain length, degree of unsaturation and branching of the carbon chain. This study investigated if microalgal fatty acid profiles are suitable for biodiesel characterization and species selection through Preference Ranking Organisation Method for Enrichment Evaluation (PROMETHEE) and Graphical Analysis for Interactive Assistance (GAIA) analysis. Fatty acid methyl ester (FAME) profiles were used to calculate the likely key chemical and physical properties of the biodiesel [cetane number (CN), iodine value (IV), cold filter plugging point, density, kinematic viscosity, higher heating value] of nine microalgal species (this study) and twelve species from the literature, selected for their suitability for cultivation in subtropical climates. An equal-parameter weighted (PROMETHEE-GAIA) ranked Nannochloropsis oculata, Extubocellulus sp. and Biddulphia sp. highest; the only species meeting the EN14214 and ASTM D6751-02 biodiesel standards, except for the double bond limit in the EN14214. Chlorella vulgaris outranked N. oculata when the twelve microalgae were included. Culture growth phase (stationary) and, to a lesser extent, nutrient provision affected CN and IV values of N. oculata due to lower eicosapentaenoic acid (EPA) contents. Application of a polyunsaturated fatty acid (PUFA) weighting to saturation led to a lower ranking of species exceeding the double bond EN14214 thresholds. In summary, CN, IV, C18:3 and double bond limits were the strongest drivers in equal biodiesel parameter-weighted PROMETHEE analysis.