620 resultados para Web Mining
Resumo:
The artwork describes web as a network environment and a space where people are connected and as a result, it can reshape you as an interactive participant who is able to regenerate an object as a new form through a truly collaborative and cooperative interactions with others. The artwork has been created based on the research findings of characteristic of web: 1) Participatory (Slater 2002, p.536), 2) Communicational (Rheingold 1993), 3) Connected (Jordan 1999, 80), and 4) Stylising (Jordan 1999, 69). The artwork has conceptualised and visualised those characteristics of web based on principles of graphic design and visual communication.
Resumo:
Web design elements are significantly important for web designers to understand target users in terms of effective communication design and to develop a successful web site. However, web design elements generally known are broad and various that are hardly conceived and classified, so many practitioners and design researchers approach to web design elements based on graphic and visual design that mainly focus on print media design. This paper discusses about web design elements in terms of online user experience, as web media certainly differs from print media. It aims to propose a fundamentally new concept, called 'UEDUs: User Experience Design Units' which enables web designers to define web design elements and conceptualise user experience depending on the purpose of web site development.
Resumo:
With the size and state of the Internet today, a good quality approach to organizing this mass of information is of great importance. Clustering web pages into groups of similar documents is one approach, but relies heavily on good feature extraction and document representation as well as a good clustering approach and algorithm. Due to the changing nature of the Internet, resulting in a dynamic dataset, an incremental approach is preferred. In this work we propose an enhanced incremental clustering approach to develop a better clustering algorithm that can help to better organize the information available on the Internet in an incremental fashion. Experiments show that the enhanced algorithm outperforms the original histogram based algorithm by up to 7.5%.
Resumo:
Association rule mining is one technique that is widely used when querying databases, especially those that are transactional, in order to obtain useful associations or correlations among sets of items. Much work has been done focusing on efficiency, effectiveness and redundancy. There has also been a focusing on the quality of rules from single level datasets with many interestingness measures proposed. However, with multi-level datasets now being common there is a lack of interestingness measures developed for multi-level and cross-level rules. Single level measures do not take into account the hierarchy found in a multi-level dataset. This leaves the Support-Confidence approach,which does not consider the hierarchy anyway and has other drawbacks, as one of the few measures available. In this paper we propose two approaches which measure multi-level association rules to help evaluate their interestingness. These measures of diversity and peculiarity can be used to help identify those rules from multi-level datasets that are potentially useful.
Resumo:
Despite all attempts to prevent fraud, it continues to be a major threat to industry and government. Traditionally, organizations have focused on fraud prevention rather than detection, to combat fraud. In this paper we present a role mining inspired approach to represent user behaviour in Enterprise Resource Planning (ERP) systems, primarily aimed at detecting opportunities to commit fraud or potentially suspicious activities. We have adapted an approach which uses set theory to create transaction profiles based on analysis of user activity records. Based on these transaction profiles, we propose a set of (1) anomaly types to detect potentially suspicious user behaviour and (2) scenarios to identify inadequate segregation of duties in an ERP environment. In addition, we present two algorithms to construct a directed acyclic graph to represent relationships between transaction profiles. Experiments were conducted using a real dataset obtained from a teaching environment and a demonstration dataset, both using SAP R/3, presently the most predominant ERP system. The results of this empirical research demonstrate the effectiveness of the proposed approach.
Resumo:
Traffic safety is a major concern world-wide. It is in both the sociological and economic interests of society that attempts should be made to identify the major and multiple contributory factors to those road crashes. This paper presents a text mining based method to better understand the contextual relationships inherent in road crashes. By examining and analyzing the crash report data in Queensland from year 2004 and year 2005, this paper identifies and reports the major and multiple contributory factors to those crashes. The outcome of this study will support road asset management in reducing road crashes.
Resumo:
Current multimedia Web search engines still use keywords as the primary means to search. Due to the richness in multimedia contents, general users constantly experience some difficulties in formulating textual queries that are representative enough for their needs. As a result, query reformulation becomes part of an inevitable process in most multimedia searches. Previous Web query formulation studies did not investigate the modification sequences and thus can only report limited findings on the reformulation behavior. In this study, we propose an automatic approach to examine multimedia query reformulation using large-scale transaction logs. The key findings show that search term replacement is the most dominant type of modifications in visual searches but less important in audio searches. Image search users prefer the specified search strategy more than video and audio users. There is also a clear tendency to replace terms with synonyms or associated terms in visual queries. The analysis of the search strategies in different types of multimedia searching provides some insights into user’s searching behavior, which can contribute to the design of future query formulation assistance for keyword-based Web multimedia retrieval systems.
Resumo:
Searching for multimedia is an important activity for users of Web search engines. Studying user's interactions with Web search engine multimedia buttons, including image, audio, and video, is important for the development of multimedia Web search systems. This article provides results from a Weblog analysis study of multimedia Web searching by Dogpile users in 2006. The study analyzes the (a) duration, size, and structure of Web search queries and sessions; (b) user demographics; (c) most popular multimedia Web searching terms; and (d) use of advanced Web search techniques including Boolean and natural language. The current study findings are compared with results from previous multimedia Web searching studies. The key findings are: (a) Since 1997, image search consistently is the dominant media type searched followed by audio and video; (b) multimedia search duration is still short (>50% of searching episodes are <1 min), using few search terms; (c) many multimedia searches are for information about people, especially in audio search; and (d) multimedia search has begun to shift from entertainment to other categories such as medical, sports, and technology (based on the most repeated terms). Implications for design of Web multimedia search engines are discussed.
Resumo:
This paper is aimed at investigating the effect of web openings on the plastic bending behaviour and section moment capacity of a new cold-formed steel beam known as LiteSteel beam (LSB) using numerical modelling. Different LSB sections with varying circular hole diameter and spacing were considered. A simplified but appropriate numerical modelling technique was developed for the modelling of monosymmetric sections such as LSBs subject to bending, and was used to simulate a series of section moment capacity tests of LSB flexural members with web openings. The buckling and ultimate strength behaviour was investigated in detail and the modeling technique was further improved through a comparison of numerical and experimental results. This paper describes the simplified finite element modeling technique used in this study that includes all the significant behavioural effects affecting the plastic bending behaviour and section moment capacity of LSB sections with web holes. Numerical and test results and associated findings are also presented.
Resumo:
The new cold-formed LiteSteel beam (LSB) sections have found increasing popularity in residential, industrial and commercial buildings due to their lightweight and cost-effectiveness. They have the beneficial characteristics of including torsionally rigid rectangular flanges combined with economical fabrication processes. Currently there is significant interest in using LSB sections as flexural members in floor joist systems. When used as floor joists, the LSB sections require holes in the web to provide access for inspection and various services. But there are no design methods that provide accurate predictions of the moment capacities of LSBs with web holes. In this study, the buckling and ultimate strength behaviour of LSB flexural members with web holes was investigated in detail by using a detailed parametric study based on finite element analyses with an aim to develop appropriate design rules and recommendations for the safe design of LSB floor joists. Moment capacity curves were obtained using finite element analyses including all the significant behavioural effects affecting their ultimate member capacity. The parametric study produced the required moment capacity curves of LSB section with a range of web hole combinations and spans. A suitable design method for predicting the ultimate moment capacity of LSB with web holes was finally developed. This paper presents the details of this investigation and the results
Resumo:
The inquiry documented in this thesis is located at the nexus of technological innovation and traditional schooling. As we enter the second decade of a new century, few would argue against the increasingly urgent need to integrate digital literacies with traditional academic knowledge. Yet, despite substantial investments from governments and businesses, the adoption and diffusion of contemporary digital tools in formal schooling remain sluggish. To date, research on technology adoption in schools tends to take a deficit perspective of schools and teachers, with the lack of resources and teacher ‘technophobia’ most commonly cited as barriers to digital uptake. Corresponding interventions that focus on increasing funding and upskilling teachers, however, have made little difference to adoption trends in the last decade. Empirical evidence that explicates the cultural and pedagogical complexities of innovation diffusion within long-established conventions of mainstream schooling, particularly from the standpoint of students, is wanting. To address this knowledge gap, this thesis inquires into how students evaluate and account for the constraints and affordances of contemporary digital tools when they engage with them as part of their conventional schooling. It documents the attempted integration of a student-led Web 2.0 learning initiative, known as the Student Media Centre (SMC), into the schooling practices of a long-established, high-performing independent senior boys’ school in urban Australia. The study employed an ‘explanatory’ two-phase research design (Creswell, 2003) that combined complementary quantitative and qualitative methods to achieve both breadth of measurement and richness of characterisation. In the initial quantitative phase, a self-reported questionnaire was administered to the senior school student population to determine adoption trends and predictors of SMC usage (N=481). Measurement constructs included individual learning dispositions (learning and performance goals, cognitive playfulness and personal innovativeness), as well as social and technological variables (peer support, perceived usefulness and ease of use). Incremental predictive models of SMC usage were conducted using Classification and Regression Tree (CART) modelling: (i) individual-level predictors, (ii) individual and social predictors, and (iii) individual, social and technological predictors. Peer support emerged as the best predictor of SMC usage. Other salient predictors include perceived ease of use and usefulness, cognitive playfulness and learning goals. On the whole, an overwhelming proportion of students reported low usage levels, low perceived usefulness and a lack of peer support for engaging with the digital learning initiative. The small minority of frequent users reported having high levels of peer support and robust learning goal orientations, rather than being predominantly driven by performance goals. These findings indicate that tensions around social validation, digital learning and academic performance pressures influence students’ engagement with the Web 2.0 learning initiative. The qualitative phase that followed provided insights into these tensions by shifting the analytics from individual attitudes and behaviours to shared social and cultural reasoning practices that explain students’ engagement with the innovation. Six indepth focus groups, comprising 60 students with different levels of SMC usage, were conducted, audio-recorded and transcribed. Textual data were analysed using Membership Categorisation Analysis. Students’ accounts converged around a key proposition. The Web 2.0 learning initiative was useful-in-principle but useless-in-practice. While students endorsed the usefulness of the SMC for enhancing multimodal engagement, extending peer-topeer networks and acquiring real-world skills, they also called attention to a number of constraints that obfuscated the realisation of these design affordances in practice. These constraints were cast in terms of three binary formulations of social and cultural imperatives at play within the school: (i) ‘cool/uncool’, (ii) ‘dominant staff/compliant student’, and (iii) ‘digital learning/academic performance’. The first formulation foregrounds the social stigma of the SMC among peers and its resultant lack of positive network benefits. The second relates to students’ perception of the school culture as authoritarian and punitive with adverse effects on the very student agency required to drive the innovation. The third points to academic performance pressures in a crowded curriculum with tight timelines. Taken together, findings from both phases of the study provide the following key insights. First, students endorsed the learning affordances of contemporary digital tools such as the SMC for enhancing their current schooling practices. For the majority of students, however, these learning affordances were overshadowed by the performative demands of schooling, both social and academic. The student participants saw engagement with the SMC in-school as distinct from, even oppositional to, the conventional social and academic performance indicators of schooling, namely (i) being ‘cool’ (or at least ‘not uncool’), (ii) sufficiently ‘compliant’, and (iii) achieving good academic grades. Their reasoned response therefore, was simply to resist engagement with the digital learning innovation. Second, a small minority of students seemed dispositionally inclined to negotiate the learning affordances and performance constraints of digital learning and traditional schooling more effectively than others. These students were able to engage more frequently and meaningfully with the SMC in school. Their ability to adapt and traverse seemingly incommensurate social and institutional identities and norms is theorised as cultural agility – a dispositional construct that comprises personal innovativeness, cognitive playfulness and learning goals orientation. The logic then is ‘both and’ rather than ‘either or’ for these individuals with a capacity to accommodate both learning and performance in school, whether in terms of digital engagement and academic excellence, or successful brokerage across multiple social identities and institutional affiliations within the school. In sum, this study takes us beyond the familiar terrain of deficit discourses that tend to blame institutional conservatism, lack of resourcing and teacher resistance for low uptake of digital technologies in schools. It does so by providing an empirical base for the development of a ‘third way’ of theorising technological and pedagogical innovation in schools, one which is more informed by students as critical stakeholders and thus more relevant to the lived culture within the school, and its complex relationship to students’ lives outside of school. It is in this relationship that we find an explanation for how these individuals can, at the one time, be digital kids and analogue students.
Resumo:
Abstract With the phenomenal growth of electronic data and information, there are many demands for the development of efficient and effective systems (tools) to perform the issue of data mining tasks on multidimensional databases. Association rules describe associations between items in the same transactions (intra) or in different transactions (inter). Association mining attempts to find interesting or useful association rules in databases: this is the crucial issue for the application of data mining in the real world. Association mining can be used in many application areas, such as the discovery of associations between customers’ locations and shopping behaviours in market basket analysis. Association mining includes two phases. The first phase, called pattern mining, is the discovery of frequent patterns. The second phase, called rule generation, is the discovery of interesting and useful association rules in the discovered patterns. The first phase, however, often takes a long time to find all frequent patterns; these also include much noise. The second phase is also a time consuming activity that can generate many redundant rules. To improve the quality of association mining in databases, this thesis provides an alternative technique, granule-based association mining, for knowledge discovery in databases, where a granule refers to a predicate that describes common features of a group of transactions. The new technique first transfers transaction databases into basic decision tables, then uses multi-tier structures to integrate pattern mining and rule generation in one phase for both intra and inter transaction association rule mining. To evaluate the proposed new technique, this research defines the concept of meaningless rules by considering the co-relations between data-dimensions for intratransaction-association rule mining. It also uses precision to evaluate the effectiveness of intertransaction association rules. The experimental results show that the proposed technique is promising.
Resumo:
The increasing diversity of the Internet has created a vast number of multilingual resources on the Web. A huge number of these documents are written in various languages other than English. Consequently, the demand for searching in non-English languages is growing exponentially. It is desirable that a search engine can search for information over collections of documents in other languages. This research investigates the techniques for developing high-quality Chinese information retrieval systems. A distinctive feature of Chinese text is that a Chinese document is a sequence of Chinese characters with no space or boundary between Chinese words. This feature makes Chinese information retrieval more difficult since a retrieved document which contains the query term as a sequence of Chinese characters may not be really relevant to the query since the query term (as a sequence Chinese characters) may not be a valid Chinese word in that documents. On the other hand, a document that is actually relevant may not be retrieved because it does not contain the query sequence but contains other relevant words. In this research, we propose two approaches to deal with the problems. In the first approach, we propose a hybrid Chinese information retrieval model by incorporating word-based techniques with the traditional character-based techniques. The aim of this approach is to investigate the influence of Chinese segmentation on the performance of Chinese information retrieval. Two ranking methods are proposed to rank retrieved documents based on the relevancy to the query calculated by combining character-based ranking and word-based ranking. Our experimental results show that Chinese segmentation can improve the performance of Chinese information retrieval, but the improvement is not significant if it incorporates only Chinese segmentation with the traditional character-based approach. In the second approach, we propose a novel query expansion method which applies text mining techniques in order to find the most relevant words to extend the query. Unlike most existing query expansion methods, which generally select the highly frequent indexing terms from the retrieved documents to expand the query. In our approach, we utilize text mining techniques to find patterns from the retrieved documents that highly correlate with the query term and then use the relevant words in the patterns to expand the original query. This research project develops and implements a Chinese information retrieval system for evaluating the proposed approaches. There are two stages in the experiments. The first stage is to investigate if high accuracy segmentation can make an improvement to Chinese information retrieval. In the second stage, a text mining based query expansion approach is implemented and a further experiment has been done to compare its performance with the standard Rocchio approach with the proposed text mining based query expansion method. The NTCIR5 Chinese collections are used in the experiments. The experiment results show that by incorporating the text mining based query expansion with the hybrid model, significant improvement has been achieved in both precision and recall assessments.
Resumo:
In the field of semantic grid, QoS-based Web service composition is an important problem. In semantic and service rich environment like semantic grid, the emergence of context constraints on Web services is very common making the composition consider not only QoS properties of Web services, but also inter service dependencies and conflicts which are formed due to the context constraints imposed on Web services. In this paper, we present a repair genetic algorithm, namely minimal-conflict hill-climbing repair genetic algorithm, to address the Web service composition optimization problem in the presence of domain constraints and inter service dependencies and conflicts. Experimental results demonstrate the scalability and effectiveness of the genetic algorithm.
Resumo:
Many data mining techniques have been proposed for mining useful patterns in databases. However, how to effectively utilize discovered patterns is still an open research issue, especially in the domain of text mining. Most existing methods adopt term-based approaches. However, they all suffer from the problems of polysemy and synonymy. This paper presents an innovative technique, pattern taxonomy mining, to improve the effectiveness of using discovered patterns for finding useful information. Substantial experiments on RCV1 demonstrate that the proposed solution achieves encouraging performance.