156 resultados para Truncated vault and strength
Resumo:
In the present study, we examined the associations of early nutrition with adult lean body mass (LBM) and muscle strength in a birth cohort that was established to assess the long-term impact of a nutrition program. Participants (n = 1,446, 32% female) were born near Hyderabad, India, in 29 villages from 1987 to 1990, during which time only intervention villages (n = 15) had a government program that offered balanced protein-calorie supplementation to pregnant women and children. Participants’ LBM and appendicular skeletal muscle mass were measured using dual energy x-ray absorptiometry; grip strength and information on lifestyle indicators, including diet and physical activity level, were also obtained. Ages (mean = 20.3 years) and body mass indexes (weight (kg)/height (m)2; mean = 19.5) of participants in 2 groups were similar. Current dietary energy intake was higher in the intervention group. Unadjusted LBM and grip strength were similar in 2 groups. After adjustment for potential confounders, the intervention group had lower LBM (β = −0.75; P = 0.03), appendicular skeletal muscle mass, and grip strength than did controls, but these differences were small in magnitude (<0.1 standard deviation). Multivariable regression analyses showed that current socioeconomic position, energy intake, and physical activity level had a positive association with adult LBM and muscle strength. This study could not detect a “programming” effect of early nutrition supplementation on adult LBM and muscle strength.
Resumo:
Ideal coating materials for implants should be able to induce excellent osseointegration, which requires several important parameters, such as good bonding strength, limited inflammatory reaction, balanced osteoclastogenesis and osteogenesis, to gain well-functioning coated implants with long-term life span after implantation. Bioactive elements, like Sr, Mg and Si, have been found to play important roles in regulating the biological responses. It is of great interest to combine bioactive elements for developing bioactive coatings on Ti-6Al-4V orthopedic implants to elicit multidirectional effects on the osseointegration. In this study, Sr, Mg and Si-containing bioactive Sr2MgSi2O7 (SMS) ceramic coatings on Ti-6Al-4V were successfully prepared by plasma-spray coating method. The prepared SMS coatings have significantly higher bonding strength (~37MPa) than conventional pure hydroxyapatite (HA) coatings (mostly in the range of 15-25 MPa). It was also found that the prepared SMS coatings switch the macrophage phenotype into M2 extreme, inhibiting the inflammatory reaction via the inhibition of Wnt5A/Ca2+ and Toll-like receptor (TLR) pathways of macrophages. In addition, the osteoclastic activities were also inhibited by SMS coatings. The expression of osteoclastogenesis related genes (RANKL and MCSF) in bone marrow derived mesenchymal cells (BMSCs) with the involvement of macrophages was decreased, while OPG expression was enhanced on SMS coatings compared to HA coatings, indicating that SMS coatings also downregulated the osteoclastogenesis. However, the osteogenic differentiation of BMSCs with the involvement of macrophages was comparable between SMS and HA coatings. Therefore, the prepared SMS coatings showed multidirectional effects, such as improving bonding strength, reducing inflammatory reaction and downregulating osteoclastic activities, but maintaining a comparable osteogenesis, as compared with HA coatings. The combination of bioactive elements of Sr, Mg and Si into bioceramic coatings can be a promising method to develop bioactive implants with multifunctional properties for orthopaedic application.
Resumo:
Bond characteristics of masonry are partly affected by the type of mortar used, the techniques of dispersion of mortar and the surface texture of the concrete blocks. Additionally it is understood from the studies on conventional masonry, the bond characteristics are influenced by masonry age and curing methods as well as dryness/dampness at the time of testing. However, all these effects on bond for thin bed masonry containing polymer cement mortar are not well researched. Therefore, the effect of ageing and curing method on bond strength of masonry made with polymer cement mortar was experimentally investigated as part of an ongoing bond strength research program on thin bed concrete masonry at Queensland University of technology. This paper presents the experimental investigation of the flexural and shears bond characteristics of thin bed concrete masonry of varying age/ curing methods. Since, the polymer cement mortar is commonly used in thin bed masonry; bond development through two different curing conditions (dry/wet) was investigated in this research work. The results exhibit that the bond strength increases with the age under the wet and dry curing conditions; dry curing produce stronger bond and is considered as an advantage towards making this form of thin bed masonry better sustainable.
Resumo:
There is an increasing need for biodegradable, environmentally friendly plastics to replace the petroleum-based non-degradable plastics which litter and pollute the environment. Starch-based plastic film composites are becoming a popular alternative because of their low cost, biodegradability, the abundance of starch, and ease with which starch-based films can be chemically modified. This paper reports on the results of using sugar cane bagasse nanofibres to improve the physicochemical properties of starch-based polymers. The addition of bagasse nanofibre (2.5, 5, 10 or 20 wt%) to (modified) potato starch (‘Soluble starch’) reduced the moisture uptake by up to 17 % at 58 % relative humidity (RH). The film’s tensile strength and Young’s Modulus increased by up to 100 % and 200 % with 10 wt% and 20 wt% nanofibre respectively at 58% RH. The tensile strain reduced by up to 70 % at 20 wt% fibre loading. These results indicate that addition of sugar cane bagasse nanofibres significantly improved the properties of starch-based plastic films
Resumo:
Purpose Is eccentric hamstring strength and between limb imbalance in eccentric strength, measured during the Nordic hamstring exercise, a risk factor for hamstring strain injury (HSI)? Methods Elite Australian footballers (n=210) from five different teams participated. Eccentric hamstring strength during the Nordic was taken at the commencement and conclusion of preseason training and in season. Injury history and demographic data were also collected. Reports on prospectively occurring HSIs were completed by team medical staff. Relative risk (RR) was determined for univariate data and logistic regression was employed for multivariate data. Results Twenty-eight HSIs were recorded. Eccentric hamstring strength below 256N at the start of preseason and 279N at the end of preseason increased risk of future HSI 2.7 (relative risk, 2.7; 95% confidence interval, 1.3 to 5.5; p = 0.006) and 4.3 fold (relative risk, 4.3; 95% confidence interval, 1.7 to 11.0; p = 0.002) respectively. Between limb imbalance in strength of greater than 10% did not increase the risk of future HSI. Univariate analysis did not reveal a significantly greater relative risk for future HSI in athletes who had sustained a lower limb injury of any kind within the last 12 months. Logistic regression revealed interactions between both athlete age and history of HSI with eccentric hamstring strength, whereby the likelihood of future HSI in older athletes or athletes with a history of HSI was reduced if an athlete had high levels of eccentric strength. Conclusion Low levels of eccentric hamstring strength increased the risk of future HSI. Interaction effects suggest that the additional risk of future HSI associated with advancing age or previous injury was mitigated by higher levels of eccentric hamstring strength.
Resumo:
Graphyne is an allotrope of graphene. The mechanical properties of graphynes (α-, β-, γ- and 6,6,12-graphynes) under uniaxial tension deformation at different temperatures and strain rates are studied using molecular dynamics simulations. It is found that graphynes are more sensitive to temperature changes than graphene in terms of fracture strength and Young's modulus. The temperature sensitivity of the different graphynes is proportionally related to the percentage of acetylenic linkages in their structures, with the α-graphyne (having 100% of acetylenic linkages) being most sensitive to temperature. For the same graphyne, temperature exerts a more pronounced effect on the Young's modulus than fracture strength, which is different from that of graphene. The mechanical properties of graphynes are also sensitive to strain rate, in particular at higher temperatures.
Resumo:
The effects of reductions in cell wall lignin content, manifested by RNA interference suppression of coumaroyl 3'-hydroxylase, on plant growth, water transport, gas exchange, and photosynthesis were evaluated in hybrid poplar trees (Populus alba 3 grandidentata). The growth characteristics of the reduced lignin trees were significantly impaired, resulting in smaller stems and reduced root biomass when compared to wild-type trees, as well as altered leaf morphology and architecture. The severe inhibition of cell wall lignification produced trees with a collapsed xylem phenotype, resulting in compromised vascular integrity, and displayed reduced hydraulic conductivity and a greater susceptibility to wall failure and cavitation. In the reduced lignin trees, photosynthetic carbon assimilation and stomatal conductance were also greatly reduced, however, shoot xylem pressure potential and carbon isotope discrimination were higher and water-use efficiency was lower, inconsistent with water stress. Reductions in assimilation rate could not be ascribed to increased stomatal limitation. Starch and soluble sugars analysis of leaves revealed that photosynthate was accumulating to high levels, suggesting that the trees with substantially reduced cell wall lignin were not carbon limited and that reductions in sink strength were, instead, limiting photosynthesis.
Resumo:
Researchers have postulated that reduced hip-abductor muscle strength may have a role in the progression of knee osteoarthritis by increasing the external knee-adduction moment. However, the relationship between hip-abductor strength and frontal-plane biomechanics remains unclear. To experimentally reduce hip-abduction strength and observe the subsequent changes in frontal-plane biomechanics. Descriptive laboratory study. Research laboratory. Eight healthy, recreationally active men (age = 27 ± 6 years, height = 1.75 ± 0.11 m, mass = 76.1 ± 10.0 kg). All participants underwent a superior gluteal nerve block injection to reduce the force output of the hip-abductor muscle group. Maximal isometric hip-abduction strength and gait biomechanical data were collected before and after the injections. Gait biomechanical variables collected during walking consisted of knee- and hip-adduction moments and impulses and the peak angles of contralateral pelvic drop, hip adduction, and ipsilateral trunk lean. Hip-abduction strength was reduced after the injection (P = .001) and remained lower than baseline values at the completion of the postinjection gait data collection (P = .02). No alterations in hip- or knee-adduction moments (hip: P = .11; knee: P = .52) or impulses (hip: P = .16; knee: P = .41) were found after the nerve block. Similarly, no changes in angular kinematics were observed for contralateral pelvic drop (P = .53), ipsilateral trunk lean (P = .78), or hip adduction (P = .48). A short-term reduction in hip-abductor strength was not associated with alterations in the frontal-plane gait biomechanics of young, healthy men. Further research is needed to determine whether a similar relationship is true in older adults with knee osteoarthritis.
Resumo:
Background To describe the clinical, functional and quality of life characteristics in women with Stress Urinary Incontinence (SUI). In addition, to analyse the relationship between the variables reported by the patients and those informed by the clinicians, and the relationship between instrumented variables and the manual pelvic floor strength assessment. Methods Two hundred and eighteen women participated in this observational, analytical study. An interview about Urinary Incontinence and the quality of life questionnaires (EuroQoL-5D and SF-12) were developed as outcomes reported by the patients. Manual muscle testing and perineometry as outcomes informed by the clinician were assessed. Descriptive and correlation analysis were carried out. Results The average age of the subjects was (39.93?±?12.27 years), (24.49?±?3.54 BMI). The strength evaluated by manual testing of the right levator ani muscles was 7.79?±?2.88, the strength of left levator ani muscles was 7.51?±?2.91 and the strength assessed with the perineometer was 7.64?±?2.55. A positive correlation was found between manual muscle testing and perineometry of the pelvic floor muscles (p?.001). No correlation was found between outcomes of quality of life reported by the patients and outcomes of functional capacity informed by the physiotherapist. Conclusion A stratification of the strength of pelvic floor muscles in a normal distribution of a large sample of women with SUI was done, which provided the clinic with a baseline. There is a relationship between the strength of the pelvic muscles assessed manually and that obtained by a perineometer in women with SUI. There was no relationship between these values of strength and quality of life perceived.
Resumo:
Objective The aim of this systematic review and meta-analysis was to determine the overall effect of resistance training (RT) on measures of muscular strength in people with Parkinson’s disease (PD). Methods Controlled trials with parallel-group-design were identified from computerized literature searching and citation tracking performed until August 2014. Two reviewers independently screened for eligibility and assessed the quality of the studies using the Cochrane risk-of-bias-tool. For each study, mean differences (MD) or standardized mean differences (SMD) and 95% confidence intervals (CI) were calculated for continuous outcomes based on between-group comparisons using post-intervention data. Subgroup analysis was conducted based on differences in study design. Results Nine studies met the inclusion criteria; all had a moderate to high risk of bias. Pooled data showed that knee extension, knee flexion and leg press strength were significantly greater in PD patients who undertook RT compared to control groups with or without interventions. Subgroups were: RT vs. control-without-intervention, RT vs. control-with-intervention, RT-with-other-form-of-exercise vs. control-without-intervention, RT-with-other-form-of-exercise vs. control-with-intervention. Pooled subgroup analysis showed that RT combined with aerobic/balance/stretching exercise resulted in significantly greater knee extension, knee flexion and leg press strength compared with no-intervention. Compared to treadmill or balance exercise it resulted in greater knee flexion, but not knee extension or leg press strength. RT alone resulted in greater knee extension and flexion strength compared to stretching, but not in greater leg press strength compared to no-intervention. Discussion Overall, the current evidence suggests that exercise interventions that contain RT may be effective in improving muscular strength in people with PD compared with no exercise. However, depending on muscle group and/or training dose, RT may not be superior to other exercise types. Interventions which combine RT with other exercise may be most effective. Findings should be interpreted with caution due to the relatively high risk of bias of most studies.
Resumo:
"It could easily provide the back-drop for a James Bond movie. Deep inside a mountain near the North Pole, down a fortified tunnel, and behind airlocked doors in a vault frozen to -18 degrees Celsius, scientists are squirreling away millions of seed samples. The samples constitute the very foundation of agriculture, the biological diversity needed so the world's major food crops can adapt to the next pest or disease, or to climate change. It's little wonder that the Svalbard Global Seed Vault has captured the public's imagination more than almost any agricultural topic in recent years. Popular press reports about the ‘Doomsday Vault,’ however, typically mask the complexity of the endeavor and, if anything, underestimate its practical utility." Cary Fowler This chapter considers the use of seed banks to address concerns about intellectual property, climate change and food security. It has a number of themes. First of all, it is interested in the use of ‘Big Science’ projects to address pressing global scientific concerns and Millennium Development Goals. Second, it highlights the increasing use of banks as a means of managing both property and intellectual property across a wide range of fields of agriculture and biotechnology. Third, it considers the linkage of intellectual property, access to genetic resources and benefit sharing. There are a variety of positions in this debate. Some see requirements in respect of access to genetic resources and benefit sharing as an inconvenient burden for science and commerce. Others defend access to genetic resources and benefit sharing as meaningful and productive. Those inclined to somewhat more conspiratorial views suggest that access to genetic resources and benefit sharing are a ruse to facilitate biopiracy. This chapter has a number of components. Section I focuses upon the Consultative Group on International Agricultural Research (CGIAR) network – often raised as a model for Climate Innovation Centres. Section II considers the Svalbard Global Seed Vault – the so-called Doomsday Vault. After a consideration of the World Summit on Food Security in 2009, it is concluded in this chapter that any future international agreement on climate change needs to address intellectual property, plant genetic resources and food security.
Resumo:
We investigated functional, morphological and molecular adaptations to strength training exercise and cold water immersion (CWI) through two separate studies. In one study, 21 physically active men strength trained for 12 weeks (2 d⋅wk–1), with either 10 min of CWI or active recovery (ACT) after each training session. Strength and muscle mass increased more in the ACT group than in the CWI group (P<0.05). Isokinetic work (19%), type II muscle fibre cross-sectional area (17%) and the number of myonuclei per fibre (26%) increased in the ACT group (all P<0.05) but not the CWI group. In another study, nine active men performed a bout of single-leg strength exercises on separate days, followed by CWI or ACT. Muscle biopsies were collected before and 2, 24 and 48 h after exercise. The number of satellite cells expressing neural cell adhesion molecule (NCAM) (10−30%) and paired box protein (Pax7)(20−50%) increased 24–48 h after exercise with ACT. The number of NCAM+ satellitecells increased 48 h after exercise with CWI. NCAM+- and Pax7+-positivesatellite cell numbers were greater after ACT than after CWI (P<0.05). Phosphorylation of p70S6 kinaseThr421/Ser424 increased after exercise in both conditions but was greater after ACT (P<0.05). These data suggest that CWI attenuates the acute changes in satellite cell numbers and activity of kinases that regulate muscle hypertrophy, which may translate to smaller long-term training gains in muscle strength and hypertrophy. The use of CWI as a regular post-exercise recovery strategy should be reconsidered.
Resumo:
Cold water immersion (CWI) and active recovery (ACT) are frequently used as post-exercise recovery strategies. However, the physiological effects of CWI and ACT after resistance exercise are not well characterized. We examined the effects of CWI and ACT on cardiac output (Q), muscle oxygenation (SmO2) and blood volume (tHb), muscle temperature (Tmuscle ) and isometric strength after resistance exercise. On separate days, 10 men performed resistance exercise, followed by 10 min CWI at 10°C or 10 min ACT (low-intensity cycling). Q (7.9±2.7 l) and Tmuscle (2.2±0.8ºC) increased, whereas SmO2 (-21.5±8.8%) and tHb (-10.1±7.7 μM) decreased after exercise (p<0.05). During CWI, Q ̇(-1.1±0.7 l) and Tmuscle (-6.6±5.3ºC) decreased, while tHb (121±77 μM) increased (p<0.05). In the hour after CWI, Q ̇and Tmuscle remained low, while tHb also decreased (p<0.05). By contrast, during ACT, Q ̇(3.9±2.3 l), Tmuscle (2.2±0.5ºC), SmO2 (17.1±5.7%) and tHb (91±66 μM) all increased (p<0.05). In the hour after ACT, Tmuscle and tHb remained high (p<0.05). Peak isometric strength during 10 s maximum voluntary contractions (MVCs) did not change significantly after CWI, whereas it decreased after ACT (-30 to -45 Nm; p<0.05). Muscle deoxygenation time during MVCs increased after ACT (p<0.05), but not after CWI. Muscle reoxygenation time after MVCs tended to increase after CWI (p=0.052). These findings suggest firstly that hemodynamics and muscle temperature after resistance exercise are dependent on ambient temperature and metabolic demands with skeletal muscle, and secondly, that recovery of strength after resistance exercise is independent of changes in hemodynamics and muscle temperature.
Resumo:
A number of coating materials have been developed over past two decades seeking to improve the osseointegration of orthopedic metal implants. Despite the many candidate materials trialed, their low rate of translation into clinical applications suggests there is room for improving the current strategies for their development. We therefore propose that the ideal coating material(s) should possess the following three properties: (i) high bonding strength, (ii) release of functional ions, and (iii) favourable osteoimmunomodulatory effects. To test this proposal, we developed clinoenstatite (CLT, MgSiO3), which as a coating material has high bonding strength, cytocompability and immunomodulatory effects that are favourable for in vivo osteogenesis. The bonding strength of CLT coatings was 50.1 ± 3.2 MPa, more than twice that of hydroxyapatite (HA) coatings, at 23.5 ± 3.5 MPa. CLT coatings released Mg and Si ions, and compared to HA coatings, induced an immunomodulation more conducive for osseointegration, demonstrated by downregurelation of pro-inflammatory cytokines, enhancement of osteogenesis, and inhibition of osteoclastogenesis. In vivo studies demonstrated that CLT coatings improved osseointegration with host bone, as shown by the enhanced biomechanical strength and increased de novo bone formation, when compared with HA coatings. These results support the notion that coating materials with the proposed properties can induce an in vivo environment better suited for osseointegration. These properties could, therefore, be fundamental when developing high-performance coating materials.