487 resultados para Traffic engineering computing


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An earlier study by the Asian Development Bank (ADB) showed that the annual cost of road traffic accidents in 2001 was S$699.36 million which was 0.5% of the annual GDP. This paper attempts to update of the cost estimates of road traffic accidents. More precise methods of computing the human cost, lost output and property damage are adopted which grew in an annual cost of S$610.3 million or 0.338% of the annual GDP in 2003. A more conservative estimate of S$878,000 for fatal accident is also obtained, compared to the earlier figure of S$1.4 million. This study has shown that it is necessary to update the annual traffic accident costs regularly, as the figures vary with the number of accidents which change with time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poisson distribution has often been used for count like accident data. Negative Binomial (NB) distribution has been adopted in the count data to take care of the over-dispersion problem. However, Poisson and NB distributions are incapable of taking into account some unobserved heterogeneities due to spatial and temporal effects of accident data. To overcome this problem, Random Effect models have been developed. Again another challenge with existing traffic accident prediction models is the distribution of excess zero accident observations in some accident data. Although Zero-Inflated Poisson (ZIP) model is capable of handling the dual-state system in accident data with excess zero observations, it does not accommodate the within-location correlation and between-location correlation heterogeneities which are the basic motivations for the need of the Random Effect models. This paper proposes an effective way of fitting ZIP model with location specific random effects and for model calibration and assessment the Bayesian analysis is recommended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Navigational collisions are one of the major safety concerns in many seaports. To address this safety concern, a comprehensive and structured method of collision risk management is necessary. Traditionally management of port water collision risks has been relied on historical collision data. However, this collision-data-based approach is hampered by several shortcomings, such as randomness and rarity of collision occurrence leading to obtaining insufficient number of samples for a sound statistical analysis, insufficiency in explaining collision causation, and reactive approach to safety. A promising alternative approach that overcomes these shortcomings is the navigational traffic conflict technique that uses traffic conflicts as an alternative to the collision data. This paper proposes a collision risk management method by utilizing the principles of this technique. This risk management method allows safety analysts to diagnose safety deficiencies in a proactive manner, which, consequently, has great potential for managing collision risks in a fast, reliable and efficient manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on an experiment that was conducted to determine the extent to which group dynamics impacts on the effectiveness of software development teams. The experiment was conducted on software engineering project students at the Queensland University of Technology (QUT).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Software as a Service (SaaS) is gaining more and more attention from software users and providers recently. This has raised many new challenges to SaaS providers in providing better SaaSes that suit everyone needs at minimum costs. One of the emerging approaches in tackling this challenge is by delivering the SaaS as a composite SaaS. Delivering it in such an approach has a number of benefits, including flexible offering of the SaaS functions and decreased cost of subscription for users. However, this approach also introduces new problems for SaaS resource management in a Cloud data centre. We present the problem of composite SaaS resource management in Cloud data centre, specifically on its initial placement and resource optimization problems aiming at improving the SaaS performance based on its execution time as well as minimizing the resource usage. Our approach differs from existing literature because it addresses the problems resulting from composite SaaS characteristics, where we focus on the SaaS requirements, constraints and interdependencies. The problems are tackled using evolutionary algorithms. Experimental results demonstrate the efficiency and the scalability of the proposed algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, Software as a Service (SaaS) in Cloud computing, has become more and more significant among software users and providers. To offer a SaaS with flexible functions at a low cost, SaaS providers have focused on the decomposition of the SaaS functionalities, or known as composite SaaS. This approach has introduced new challenges in SaaS resource management in data centres. One of the challenges is managing the resources allocated to the composite SaaS. Due to the dynamic environment of a Cloud data centre, resources that have been initially allocated to SaaS components may be overloaded or wasted. As such, reconfiguration for the components’ placement is triggered to maintain the performance of the composite SaaS. However, existing approaches often ignore the communication or dependencies between SaaS components in their implementation. In a composite SaaS, it is important to include these elements, as they will directly affect the performance of the SaaS. This paper will propose a Grouping Genetic Algorithm (GGA) for multiple composite SaaS application component clustering in Cloud computing that will address this gap. To the best of our knowledge, this is the first attempt to handle multiple composite SaaS reconfiguration placement in a dynamic Cloud environment. The experimental results demonstrate the feasibility and the scalability of the GGA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For facial expression recognition systems to be applicable in the real world, they need to be able to detect and track a previously unseen person's face and its facial movements accurately in realistic environments. A highly plausible solution involves performing a "dense" form of alignment, where 60-70 fiducial facial points are tracked with high accuracy. The problem is that, in practice, this type of dense alignment had so far been impossible to achieve in a generic sense, mainly due to poor reliability and robustness. Instead, many expression detection methods have opted for a "coarse" form of face alignment, followed by an application of a biologically inspired appearance descriptor such as the histogram of oriented gradients or Gabor magnitudes. Encouragingly, recent advances to a number of dense alignment algorithms have demonstrated both high reliability and accuracy for unseen subjects [e.g., constrained local models (CLMs)]. This begs the question: Aside from countering against illumination variation, what do these appearance descriptors do that standard pixel representations do not? In this paper, we show that, when close to perfect alignment is obtained, there is no real benefit in employing these different appearance-based representations (under consistent illumination conditions). In fact, when misalignment does occur, we show that these appearance descriptors do work well by encoding robustness to alignment error. For this work, we compared two popular methods for dense alignment-subject-dependent active appearance models versus subject-independent CLMs-on the task of action-unit detection. These comparisons were conducted through a battery of experiments across various publicly available data sets (i.e., CK+, Pain, M3, and GEMEP-FERA). We also report our performance in the recent 2011 Facial Expression Recognition and Analysis Challenge for the subject-independent task.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A composite SaaS (Software as a Service) is a software that is comprised of several software components and data components. The composite SaaS placement problem is to determine where each of the components should be deployed in a cloud computing environment such that the performance of the composite SaaS is optimal. From the computational point of view, the composite SaaS placement problem is a large-scale combinatorial optimization problem. Thus, an Iterative Cooperative Co-evolutionary Genetic Algorithm (ICCGA) was proposed. The ICCGA can find reasonable quality of solutions. However, its computation time is noticeably slow. Aiming at improving the computation time, we propose an unsynchronized Parallel Cooperative Co-evolutionary Genetic Algorithm (PCCGA) in this paper. Experimental results have shown that the PCCGA not only has quicker computation time, but also generates better quality of solutions than the ICCGA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Particles emitted by vehicles are known to cause detrimental health effects, with their size and oxidative potential among the main factors responsible. Therefore, understanding the relationship between traffic composition and both the physical characteristics and oxidative potential of particles is critical. To contribute to the limited knowledge base in this area, we investigated this relationship in a 4.5 km road tunnel in Brisbane, Australia. On-road concentrations of ultrafine particles (<100 nm, UFPs), fine particles (PM2.5), CO, CO2 and particle associated reactive oxygen species (ROS) were measured using vehicle-based mobile sampling. UFPs were measured using a condensation particle counter and PM2.5 with a DustTrak aerosol photometer. A new profluorescent nitroxide probe, BPEAnit, was used to determine ROS levels. Comparative measurements were also performed on an above-ground road to assess the role of emission dilution on the parameters measured. The profile of UFP and PM2.5 concentration with distance through the tunnel was determined, and demonstrated relationships with both road gradient and tunnel ventilation. ROS levels in the tunnel were found to be high compared to an open road with similar traffic characteristics, which was attributed to the substantial difference in estimated emission dilution ratios on the two roadways. Principal component analysis (PCA) revealed that the levels of pollutants and ROS were generally better correlated with total traffic count, rather than the traffic composition (i.e. diesel and gasoline-powered vehicles). A possible reason for the lack of correlation with HDV, which has previously been shown to be strongly associated with UFPs especially, was the low absolute numbers encountered during the sampling. This may have made their contribution to in-tunnel pollution largely indistinguishable from the total vehicle volume. For ROS, the stronger association observed with HDV and gasoline vehicles when combined (total traffic count) compared to when considered individually may signal a role for the interaction of their emissions as a determinant of on-road ROS in this pilot study. If further validated, this should not be overlooked in studies of on- or near-road particle exposure and its potential health effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Decision table and decision rules play an important role in rough set based data analysis, which compress databases into granules and describe the associations between granules. Granule mining was also proposed to interpret decision rules in terms of association rules and multi-tier structure. In this paper, we further extend granule mining to describe the relationships between granules not only by traditional support and confidence, but by diversity and condition diversity as well. Diversity measures how diverse of a granule associated with the other ganules, it provides a kind of novel knowledge in databases. Some experiments are conducted to test the proposed new concepts for describing the characteristics of a real network traffic data collection. The results show that the proposed concepts are promising.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Billing Mediation Platform (BMP) in telecommunication industry is used to process real-time streams of Call Detail Records (CDRs) which can be a massive number a day. The generated records by BMP can be deployed for billing purposes, fraud detection, spam filtering, traffic analysis, and churn forecast. Several of these applications are distinguished by real-time processing requiring low-latency analysis of CDRs. Testing of such a platform carries diverse aspects like stress testing of analytics for scalability and what-if scenarios which require generating of CDRs with realistic volumetric and appropriate properties. The approach of this project is to build user friendly and flexible application which assists the development department to test their billing solution occasionally. These generators projects have been around for a while the only difference are the potions they cover and the purpose they will be used for. This paper proposes to use a simulator application to test the BMPs with simulating CDRs. The Simulated CDRs are modifiable based on the user requirements and represent real world data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research team recognized the value of network-level Falling Weight Deflectometer (FWD) testing to evaluate the structural condition trends of flexible pavements. However, practical limitations due to the cost of testing, traffic control and safety concerns and the ability to test a large network may discourage some agencies from conducting the network-level FWD testing. For this reason, the surrogate measure of the Structural Condition Index (SCI) is suggested for use. The main purpose of the research presented in this paper is to investigate data mining strategies and to develop a prediction method of the structural condition trends for network-level applications which does not require FWD testing. The research team first evaluated the existing and historical pavement condition, distress, ride, traffic and other data attributes in the Texas Department of Transportation (TxDOT) Pavement Maintenance Information System (PMIS), applied data mining strategies to the data, discovered useful patterns and knowledge for SCI value prediction, and finally provided a reasonable measure of pavement structural condition which is correlated to the SCI. To evaluate the performance of the developed prediction approach, a case study was conducted using the SCI data calculated from the FWD data collected on flexible pavements over a 5-year period (2005 – 09) from 354 PMIS sections representing 37 pavement sections on the Texas highway system. The preliminary study results showed that the proposed approach can be used as a supportive pavement structural index in the event when FWD deflection data is not available and help pavement managers identify the timing and appropriate treatment level of preventive maintenance activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traffic safety studies demand more than what current micro-simulation models can provide as they presume that all drivers exhibit safe behaviors. All the microscopic traffic simulation models include a car following model. This paper highlights the limitations of the Gipps car following model ability to emulate driver behavior for safety study purposes. A safety adapted car following model based on the Gipps car following model is proposed to simulate unsafe vehicle movements, with safety indicators below critical thresholds. The modifications are based on the observations of driver behavior in real data and also psychophysical notions. NGSIM vehicle trajectory data is used to evaluate the new model and short following headways and Time To Collision are employed to assess critical safety events within traffic flow. Risky events are extracted from available NGSIM data to evaluate the modified model against them. The results from simulation tests illustrate that the proposed model can predict the safety metrics better than the generic Gipps model. The outcome of this paper can potentially facilitate assessing and predicting traffic safety using microscopic simulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cloud computing has emerged as a major ICT trend and has been acknowledged as a key theme of industry by prominent ICT organisations. However, one of the major challenges that face the cloud computing concept and its global acceptance is how to secure and protect the data that is the property of the user. The geographic location of cloud data storage centres is an important issue for many organisations and individuals due to the regulations and laws that require data and operations to reside in specific geographic locations. Thus, data owners may need to ensure that their cloud providers do not compromise the SLA contract and move their data into another geographic location. This paper introduces an architecture for a new approach for geographic location assurance, which combines the proof of storage protocol (POS) and the distance-bounding protocol. This allows the client to check where their stored data is located, without relying on the word of the cloud provider. This architecture aims to achieve better security and more flexible geographic assurance within the environment of cloud computing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditionally navigational safety analyses rely on historical collision data which is often hampered because of low collision counts, insufficiency in explaining collision causation, and reactive approach to safety. A promising alternative approach that overcomes these problems is using navigational traffic conflicts or near-misses as an alternative to the collision data. This book discusses how traffic conflicts can effectively be used in modeling of port water collision risks. Techniques for measuring and predicting collision risks in fairways, intersections, and anchorages are discussed by utilizing advanced statistical models. Risk measurement models, which quantitatively measure collision risks in waterways, are discussed. To predict risks, a hierarchical statistical modeling technique is discussed which identifies the factors influencing the risks. The modeling techniques are illustrated for Singapore port data. Results showed that traffic conflicts are an ethically appealing alternative to collision data for fast, reliable and effective safety assessment, thus possessing great potential for managing collision risks in port waters.