314 resultados para Thermoforming, thermoplastic composites, polyphenylene sulphide, part deformation
Resumo:
-
Resumo:
Part-time employment presents a conundrum in that it facilitates work-life priorities, while also, compared to equivalent full-time roles, attracting penalties such as diminished career prospects and lower commensurate remuneration. Recently, some promising theoretical developments in the job/work design literature suggest that consideration of work design may redress some of the penalties associated with part-time work. Adopting the framework of the Elaborated Model of Work Design by Parker and colleagues (2001), we examined this possibility through interviews with part-time professional service employees and their supervisors. The findings revealed that in organizations characterised by cultural norms of extended working hours and a singular-focused commitment to work, part-time roles were often inadequately re-designed when adapted from full-time arrangements. The findings also demonstrated that certain work design characteristics (e.g. predictability of work-flow, interdependencies with co-workers) render some roles more suitable for part-time arrangements than others. The research provides insights into gaps between policy objectives and outcomes associated with part-time work, challenges assumptions about the limitations of part-time roles, and suggests re-design strategies for more effective part-time arrangements.
Resumo:
Motivational deficits are generally accepted to be part of the behavioural phenotype associated with Down syndrome (DS). A motivational profile comprising low or inconsistent levels of task persistence, avoidance of challenging activities and over-dependence on adult direction has been described. However, comparisons are usually made between children with DS and those who are developing typically, without the inclusion of samples with intellectual disability (ID) from aetiologies other than DS. Such comparisons are needed to determine the extent to which motivational deficits are specific to DS, as opposed to being a feature of ID generally. Methods: The current study collected data about the personality-motivation profiles of children in three groups matched for mental age. They consisted of 80 typically developing (TD)3–7 year old children, 62 children with DS aged 7–15 years, and 54 children with moderate ID aged 7–15 years. Parents completed the 37-item EZ-Personality Questionnaire (EZPQ; Zigler et al., 2002), a measure of personality-motivational functioning. Results: There were significant differences between TD children and those with ID on all EZPQ scales. In most respects children with DS did not differ significantly from others with moderate ID, although they were rated as having greater expectancy of success and fewer negative reactions. Conclusion: The finding that children with DS are less motivated than TD children of the same mental age is consistent with previous studies in which parents have rated motivation. It seems, however, that motivation difficulties are associated with ID more generally, rather than being specific to those with DS. The study raises questions about phenotypic versus experiential effects on motivation for children with ID.
Resumo:
Arsenogorceixite BaAl3AsO3(OH)(AsO4,PO4)(OH,F)6 belongs to the crandallite mineral subgroup of the alunite supergroup. Arsenogorceixite forms a continuous series of solid solutions with related minerals including gorceixite, goyazite, arsenogoyazite, plumbogummite and philipsbornite. Two minerals from (a) Germany and (b) from Ashburton Downs, Australia were analysed by Raman spectroscopy. The spectra show some commonality but the intensities of the peaks vary. Sharp intense Raman bands for the German sample, are observed at 972 and 814 cm−1 attributed to the ν1 PO43− and AsO43− symmetric stretching modes. Raman bands at 1014, 1057, 1148 and 1160 cm−1 are attributed to the ν1 PO2 symmetric stretching mode and ν3 PO43− antisymmetric stretching vibrations. Raman bands at 764 and 776 cm−1 and 758 and 756 cm−1 are assigned to the ν3 AsO43− antisymmetric stretching vibrations. For the Australian mineral, the ν1 PO43− band is found at 973 cm−1. The intensity of the arsenate bands observed at 814, 838 and 870 cm−1 is greatly enhanced. Two low intensity Raman bands at 1307 and 1332 cm−1 are assigned to hydroxyl deformation modes. The intense Raman band at 441 cm−1 with a shoulder at 462 cm−1 is assigned to the ν2 PO43− bending mode. Raman bands at 318 and 340 cm−1 are attributed to the (AsO4)3−ν2 bending. The broad band centred at 3301 cm−1 is assigned to water stretching vibrations and the sharper peak at 3473 cm−1 is assigned to the OH stretching vibrations. The observation of strong water stretching vibrations brings into question the actual formula of arsenogorceixite. It is proposed the formula is better written as BaAl3AsO3(OH)(AsO4,PO4)(OH,F)6·xH2O. The observation of both phosphate and arsenate bands provides a clear example of solid solution formation.
Resumo:
This report provides an overview of findings of qualitative research comprising three case studies undertaken as a part of the retrospective analysis component of Sustainable Built Environment National Research Centre (SBEnrc) Project 2.7 Leveraging R&D investment for the Australian Built Environment. These case studies (see Parts 2, 3 and 4 of this suite of reports) were undertaken to illustrate the nature of past R&D investments in Australia. This was done to complement: (i) the audit and analysis of past R&D investment undertaken by Thomas Barlow (2011); and (ii) the Construction 2030 roadmap being developed by Swinburne University of Technology and Professor Göran Roos from VTT Technical Research Centre of Finland. These documents will be the basis for the final phase of the present project - developing policy guidelines for future R&D investment in the Australian built environment. Refer also Parts 1, 2 and 3 for detail findings.
Resumo:
This report discusses findings of a case study into "CADD, BIM and IPD" undertaken as a part of the retrospective analysis component of Sustainable Built Environment National Research Centre (SBEnrc) Project 2.7 Leveraging R&D investment for the Australian Built Environment. This case study investigated the evolution that has taken place in the Queensland Department of Public Works Division of Project Services during the last 20 years from: the initial implementation of computer aided design and documentation(CADD); to the experimentation with building information modelling (BIM) from the mid 2000’s; embedding integrated practice (IP); to current steps towards integrated project delivery (IPD) with the integration of contractors in the design/delivery process. This case study should be read in conjunction with Part 1 of this suite of reports.
Resumo:
This report discusses findings of a case study into "Road Construction Safety" undertaken as a part of the retrospective analysis component of Sustainable Built Environment National Research Centre (SBEnrc) Project 2.7 Leveraging R&D investment for the Australian Built Environment. The Queensland Department of Transport and Main Roads (QTMR) has taken a leadership role in developing a safer working environment for road construction workers. In the past decades, a range of initiatives have been introduced to contribute to improved performance in this area. Several initiatives have been undertaken by QTMR as part of their overarching commitment to safety. Three such initiatives form the basis for this case study investigation, in order to better illustrate the nature of R&D investment and its impact on day-to-day operations and the supply chain. These are the development and implementation of: (i) the Mechanical Traffic Aid: (ii) the Thermal Imaging Camera; and (iii) the Trailer-based CCTV (camera). This case study should be read in conjunction with Part 1 of this suite of reports.
Resumo:
This report discusses findings of a case study into "Green Buildings" undertaken as a part of the retrospective analysis component of Sustainable Built Environment National Research Centre (SBEnrc) Project 2.7 Leveraging R&D investment for the Australian Built Environment. The Western Australian Government (WAG) has taken a leadership role for a number of decades in developing more environmentally responsive buildings. In the past decade, considerable initiatives have been introduced to contribute to: (i) greening the stock of government buildings; and (ii) providing leadership in the development of other non-residential buildings developed commercially. This role has been informed by global, national and internal initiatives and research in this area. This case study investigates: (i) the nature of this leadership; and (ii) the role of R&D policy development; and (iii) the dissemination and impact of outcomes in the broader industry. This case study should be read in conjunction with Part 1 of this suite of reports.
Taxation of multinational banks : using formulary apportionment to reflect economic reality (Part 1)
Resumo:
Formulary apportionment does not attempt to undertake a transactional division of a highly integrated multinational entity. Rather, it allocates income to the jurisdictions based on an economically justifiable formula. Opposition to formulary apportionment is generally based on the argument that it is not a theoretically superior (or optimal) model because of the implementation difficulties. The conclusion that the unitary taxation model may be theoretically superior to the current arm's-length model that applies to multinational banks, despite significant implementation, compliance, and enforcement issues, is based on the unitary taxation model providing greater alignment with the unique features of these banks. The formulary apportionment model looks to the economic substance of the multinational entity and, in this sense, adopts a substance-over- form approach. Formulary apportionment further recognizes the impossibility of using arm's-length pricing for economically interdependent multinational entities. A final advantage to formulary apportionment, which is also a consequence of this model achieving greater inter-nation equity, is the elimination of double taxation.
Taxation of multinational banks : using formulary apportionment to reflect economic reality (Part 2)
Resumo:
As stated in Part 1 of this article, formulary appointment does not attempt to undertake a transactional division of a highly integrated multinational entity; rather, it allocates income to the jurisdictions based on economically justifiable formula. This article argues that the unitary taxation model is superior to the current arms-lenght model for the taxation of multinational banks despite significant implementation, complicance and enforcement issues. Part one of the article gave some background on the taxation of multinational banks, followed by a discussion of their uniqueness, and the theoretical benefits of the unitary tax model for multinational banking. Part 2 below covers the practical implications of accepting formulary apportionment as an 'optimal' regime for taxing multinational banks.
Resumo:
In recent times, light gauge steel framed (LSF) structures, such as cold-formed steel wall systems, are increasingly used, but without a full understanding of their fire performance. Traditionally the fire resistance rating of these load-bearing LSF wall systems is based on approximate prescriptive methods developed based on limited fire tests. Very often they are limited to standard wall configurations used by the industry. Increased fire rating is provided simply by adding more plasterboards to these walls. This is not an acceptable situation as it not only inhibits innovation and structural and cost efficiencies but also casts doubt over the fire safety of these wall systems. Hence a detailed fire research study into the performance of LSF wall systems was undertaken using full scale fire tests and extensive numerical studies. A new composite wall panel developed at QUT was also considered in this study, where the insulation was used externally between the plasterboards on both sides of the steel wall frame instead of locating it in the cavity. Three full scale fire tests of LSF wall systems built using the new composite panel system were undertaken at a higher load ratio using a gas furnace designed to deliver heat in accordance with the standard time temperature curve in AS 1530.4 (SA, 2005). Fire tests included the measurements of load-deformation characteristics of LSF walls until failure as well as associated time-temperature measurements across the thickness and along the length of all the specimens. Tests of LSF walls under axial compression load have shown the improvement to their fire performance and fire resistance rating when the new composite panel was used. Hence this research recommends the use of the new composite panel system for cold-formed LSF walls. The numerical study was undertaken using a finite element program ABAQUS. The finite element analyses were conducted under both steady state and transient state conditions using the measured hot and cold flange temperature distributions from the fire tests. The elevated temperature reduction factors for mechanical properties were based on the equations proposed by Dolamune Kankanamge and Mahendran (2011). These finite element models were first validated by comparing their results with experimental test results from this study and Kolarkar (2010). The developed finite element models were able to predict the failure times within 5 minutes. The validated model was then used in a detailed numerical study into the strength of cold-formed thin-walled steel channels used in both the conventional and the new composite panel systems to increase the understanding of their behaviour under nonuniform elevated temperature conditions and to develop fire design rules. The measured time-temperature distributions obtained from the fire tests were used. Since the fire tests showed that the plasterboards provided sufficient lateral restraint until the failure of LSF wall panels, this assumption was also used in the analyses and was further validated by comparison with experimental results. Hence in this study of LSF wall studs, only the flexural buckling about the major axis and local buckling were considered. A new fire design method was proposed using AS/NZS 4600 (SA, 2005), NAS (AISI, 2007) and Eurocode 3 Part 1.3 (ECS, 2006). The importance of considering thermal bowing, magnified thermal bowing and neutral axis shift in the fire design was also investigated. A spread sheet based design tool was developed based on the above design codes to predict the failure load ratio versus time and temperature for varying LSF wall configurations including insulations. Idealised time-temperature profiles were developed based on the measured temperature values of the studs. This was used in a detailed numerical study to fully understand the structural behaviour of LSF wall panels. Appropriate equations were proposed to find the critical temperatures for different composite panels, varying in steel thickness, steel grade and screw spacing for any load ratio. Hence useful and simple design rules were proposed based on the current cold-formed steel structures and fire design standards, and their accuracy and advantages were discussed. The results were also used to validate the fire design rules developed based on AS/NZS 4600 (SA, 2005) and Eurocode Part 1.3 (ECS, 2006). This demonstrated the significant improvements to the design method when compared to the currently used prescriptive design methods for LSF wall systems under fire conditions. In summary, this research has developed comprehensive experimental and numerical thermal and structural performance data for both the conventional and the proposed new load bearing LSF wall systems under standard fire conditions. Finite element models were developed to predict the failure times of LSF walls accurately. Idealized hot flange temperature profiles were developed for non-insulated, cavity and externally insulated load bearing wall systems. Suitable fire design rules and spread sheet based design tools were developed based on the existing standards to predict the ultimate failure load, failure times and failure temperatures of LSF wall studs. Simplified equations were proposed to find the critical temperatures for varying wall panel configurations and load ratios. The results from this research are useful to both structural and fire engineers and researchers. Most importantly, this research has significantly improved the knowledge and understanding of cold-formed LSF loadbearing walls under standard fire conditions.
Resumo:
The aim of this study was to prepare and characterise composites of Soluble potato starch or hydroxypropylated maize starch with milled sugar cane fibre (i.e., bagasse). Prior to the preparation of the starch-fibre composites, the ‘cast’ and the ‘hot-pressed’ methods were investigated for the preparation of starch films in order to select the preferred preparation method. The physicochemical and mechanical properties of films conditioned at different relative humidities (RHs) were determined through moisture uptake, crystallinity, glass transition temperature (Tg), thermal properties, molecular structure and tensile tests. Hot-pressed starch films have ~5.5% less moisture, twice the crystallinity (~59%), higher Tg and Young’s modulus than cast starch films. The VH-type starch polymorph was observed to be present in the hot-pressed films. The addition of bagasse fibre to both starch types, prepared by hot-pressing, reduced the moisture uptake by up to 30% (cf., cast film) at 58% RH. The addition of 5 wt% fibre increased the tensile strength and Young’s modulus by 16% and 24% respectively. It significantly decreased the tensile strain by ~53%. Fourier Transform infrared (FT-IR) spectroscopy revealed differences in hydrogen bonding capacity between the films with fibre and those without fibre. The results have been explained on the basis of the intrinsic properties of starch and bagasse fibres.
Resumo:
Two types of carbon nanotube nanocomposite strain sensors were prepared by mixing carbon nanotubes with epoxy (nanocomposite sensor) and sandwiching a carbon nanotube film between two epoxy layers (sandwich sensor). The conductivity, response and sensitivity to static and dynamic mechanical strains in these sensors were investigated. The nanocomposite sensor with 2-3 wt.% carbon nanotube demonstrated high sensitivity to mechanical strain and environmental temperature, with gauge factors of 5-8. On the other hand, a linear relationship between conductivity and dynamic mechanical strain was observed in the sandwich sensor. The sandwich sensor was also not sensitive to temperature although its strain sensitivity (gauge factor of about 3) was lower as compared with the nanocomposite sensor. Both sensors have excellent response to static and dynamic strains, thereby having great potential for strain sensing applications.
Resumo:
There is no doubt that information technology (IT) resources are important for organisations in any jurisdiction to manage their processes. Organisations consume considerable financial resources to acquire and manage their IT resources with various IT governance structures. Investment in IT, thus, is a strategic necessity. IT resources, however, do not contribute fully to business value on their own. Business value considers performance impacts of resources at various organisational levels (e.g., processes and firm levels). ITs are biased resources in that they require some form of manipulation to attain their maximum value. While we know that IT resources are important, a deeper understanding on two aspects of use of IT resources in organisations is important. First, is how to leverage the IT resources to attain its maximum value, and second, is where to evaluate IT-related business value in the organisation’s value chain. This understanding is important for organisation to sustain their operations in an ever-changing business environment. We address these issues in two parts. This paper discusses the first aspect of ways in which organisations can create and sustain their IT-related business value.
Resumo:
A deeper understanding on two aspects of use of IT resources in organisations is important to ensure sustainable investment in these IT resources. The first is how to leverage the IT resources to attain its maximum value. We discussed this aspect of use of IT resources in part 1 of this series. This discussion suggested a complementary approach as a first stage of IT business value creation, and dynamic capabilities approach to secure sustainable IT-related business value from the IT resources. The second important aspect of IT business value is where to evaluate IT-related business value in the organisations value chains. This understanding is important for organisations to ensure appropriate accountability of the investment and management of IT resources. We address this issue in this second part of the two part series.