316 resultados para Spermatic quality analysis
Resumo:
We examine the corporate governance environment of smaller listed Australian firms to investigate the factors that determine how firms respond to recommendations contained in corporate governance codes. We group corporate governance recommendations into three distinct categories and argue that differences in adoption costs between categories, together with firm specific factors, determine a firm’s decision to conform with the recommendation or to explain the reasons for non-conformance. Analysis of the conformance by smaller firms with governance recommendations highlights substantial differences in adoption rates between categories of recommendations. Our results also reveal that the cost of adopting specific recommendations, together with profitability, external audit quality, and ownership dispersion, jointly explain a firm’s decision to ‘comply or explain’. This study provides insights for policy makers and regulators regarding the appropriateness of corporate governance recommendations for smaller firms
Resumo:
Quality and equity issues as they relate to assessment practices and policy are becoming increasingly important as Australia introduces a national curriculum and achievement standards. In a context of high-stakes accountability, concerns regarding equity and quality have important implications for teachers‘ practice for the improvement of learner outcomes. This article is based on three research projects that were conducted over the past four years and were funded by the Australian Federal Government. The research focus, emergent questions, the educational contexts, and the rationale for the studies are discussed prior to the presentation of the analysis of the research findings and the implications for teachers‘ practice and policy reform.
Resumo:
In the era of global knowledge economy, urban regions—seeking to increase their competitive edge, become destinations for talent and investment, and provide prosperity and quality of life to their inhabitants—have little chance achieving their development goals without forming effective knowledge-based urban development strategies. This paper aims to shed light on the planning and development processes of the knowledge-based urban development phenomenon with respect to the construction of knowledge community precincts aimed at making space for knowledge generation and place for knowledge communities. Following to a thorough review of the literature on knowledge-based urban development and strategic asset-based planning, the paper undertakes policy and best practice analyses to learn from the planning and development processes of internationally renowned knowledge community precincts—from Copenhagen, Eindhoven and Singapore. In the light of the analyses findings, this paper scrutinises major Australian knowledge community precinct initiatives—from Sydney, Melbourne and Brisbane—to better understand the dynamics of national practices, and benchmark them against the international best practice cases. The paper concludes with a discussion on the study findings and recommendations for successfully establishing space and place for both knowledge economy and society in Australian cities.
Resumo:
BACKGROUND/OBJECTIVES: To describe the diet quality of a national sample of Australian women with a recent history of gestational diabetes mellitus (GDM) and determine factors associated with adherence to national dietary recommendations. SUBJECTS/METHODS: A postpartum lifestyle survey with 1499 Australian women diagnosed with GDM p3 years previously. Diet quality was measured using the Australian recommended food score (ARFS) and weighted by demographic and diabetes management characteristics. Multinominal logistic regression analysis was used to determine the association between diet quality and demographic characteristics, health seeking behaviours and diabetes-related risk factors. RESULTS: Mean (±s.d.) ARFS was 30.9±8.1 from a possible maximum score of 74. Subscale component scores demonstrated that the nuts/legumes, grains and fruits were the most poorly scored. Factors associated with being in the highest compared with the lowest ARFS quintile included age (odds ratio (OR) 5-year increase=1.40; 95% (confidence interval) CI:1.16–1.68), tertiary education (OR=2.19; 95% CI:1.52–3.17), speaking only English (OR=1.92; 95% CI:1.19–3.08), being sufficiently physically active (OR=2.11; 95% CI:1.46–3.05), returning for postpartum blood glucose testing (OR=1.75; 95% CI:1.23–2.50) and receiving riskreduction advice from a health professional (OR=1.80; 95% CI:1.24–2.60). CONCLUSIONS: Despite an increased risk of type 2 diabetes, women in this study had an overall poor diet quality as measured by the ARFS. Women with GDM should be targeted for interventions aimed at achieving a postpartum diet consistent with the guidelines for chronic disease prevention. Encouraging women to return for follow-up and providing risk reduction advice may be positive initial steps to improve diet quality, but additional strategies need to be identified.
Resumo:
The aim of this paper is to provide a comparison of various algorithms and parameters to build reduced semantic spaces. The effect of dimension reduction, the stability of the representation and the effect of word order are examined in the context of the five algorithms bearing on semantic vectors: Random projection (RP), singular value decom- position (SVD), non-negative matrix factorization (NMF), permutations and holographic reduced representations (HRR). The quality of semantic representation was tested by means of synonym finding task using the TOEFL test on the TASA corpus. Dimension reduction was found to improve the quality of semantic representation but it is hard to find the optimal parameter settings. Even though dimension reduction by RP was found to be more generally applicable than SVD, the semantic vectors produced by RP are somewhat unstable. The effect of encoding word order into the semantic vector representation via HRR did not lead to any increase in scores over vectors constructed from word co-occurrence in context information. In this regard, very small context windows resulted in better semantic vectors for the TOEFL test.
Resumo:
Background: Ankle fractures are one of the more commonly occurring forms of trauma managed by orthopaedic teams worldwide. The impacts of these injuries are not restricted to pain and disability caused at the time of the incident, but may also result in long term physical, psychological, and social consequences. There are currently no ankle fracture specific patient-reported outcome measures with a robust content foundation. This investigation aimed to develop a thematic conceptual framework of life impacts following ankle fracture from the experiences of people who have suffered ankle fractures as well as the health professionals who treat them. Methods: A qualitative investigation was undertaken using in-depth semi-structured interviews with people (n=12) who had previously sustained an ankle fracture (patients) and health professionals (n=6) that treat people with ankle fractures. Interviews were audio-recorded and transcribed. Each phrase was individually coded and grouped in categories and aligned under emerging themes by two independent researchers. Results: Saturation occurred after 10 in-depth patient interviews. Time since injury for patients ranged from 6 weeks to more than 2 years. Experience of health professionals ranged from 1 year to 16 years working with people with ankle fractures. Health professionals included an Orthopaedic surgeon (1), physiotherapists (3), a podiatrist (1) and an occupational therapist (1). The emerging framework derived from patient data included eight themes (Physical, Psychological, Daily Living, Social, Occupational and Domestic, Financial, Aesthetic and Medication Taking). Health professional responses did not reveal any additional themes, but tended to focus on physical and occupational themes. Conclusions: The nature of life impact following ankle fractures can extend beyond short term pain and discomfort into many areas of life. The findings from this research have provided an empirically derived framework from which a condition-specific patient-reported outcome measure can be developed.
Resumo:
The advanced programmatic risk analysis and management model (APRAM) is one of the recently developed methods that can be used for risk analysis and management purposes considering schedule, cost, and quality risks simultaneously. However, this model considers those failure risks that occur only over the design and construction phases of a project’s life cycle. While it can be sufficient for some projects for which the required cost during the operating life is much less than the budget required over the construction period, it should be modified in relation to infrastructure projects because the associated costs during the operating life cycle are significant. In this paper, a modified APRAM is proposed, which can consider potential risks that might occur over the entire life cycle of the project, including technical and managerial failure risks. Therefore, the modified model can be used as an efficient decision-support tool for construction managers in the housing industry in which various alternatives might be technically available. The modified method is demonstrated by using a real building project, and this demonstration shows that it can be employed efficiently by construction managers. The Delphi method was applied in order to figure out the failure events and their associated probabilities. The results show that although the initial cost of a cold-formed steel structural system is higher than a conventional construction system, the former’s failure cost is much lower than the latter’s
Resumo:
Modelling video sequences by subspaces has recently shown promise for recognising human actions. Subspaces are able to accommodate the effects of various image variations and can capture the dynamic properties of actions. Subspaces form a non-Euclidean and curved Riemannian manifold known as a Grassmann manifold. Inference on manifold spaces usually is achieved by embedding the manifolds in higher dimensional Euclidean spaces. In this paper, we instead propose to embed the Grassmann manifolds into reproducing kernel Hilbert spaces and then tackle the problem of discriminant analysis on such manifolds. To achieve efficient machinery, we propose graph-based local discriminant analysis that utilises within-class and between-class similarity graphs to characterise intra-class compactness and inter-class separability, respectively. Experiments on KTH, UCF Sports, and Ballet datasets show that the proposed approach obtains marked improvements in discrimination accuracy in comparison to several state-of-the-art methods, such as the kernel version of affine hull image-set distance, tensor canonical correlation analysis, spatial-temporal words and hierarchy of discriminative space-time neighbourhood features.
Resumo:
Citizen Science projects are initiatives in which members of the general public participate in scientific research projects and perform or manage research-related tasks such as data collection and/or data annotation. Citizen Science is technologically possible and scientifically significant. However, although research teams can save time and money by recruiting general citizens to volunteer their time and skills to help data analysis, the reliability of contributed data varies a lot. Data reliability issues are significant to the domain of Citizen Science due to the quantity and diversity of people and devices involved. Participants may submit low quality, misleading, inaccurate, or even malicious data. Therefore, finding a way to improve the data reliability has become an urgent demand. This study aims to investigate techniques to enhance the reliability of data contributed by general citizens in scientific research projects especially for acoustic sensing projects. In particular, we propose to design a reputation framework to enhance data reliability and also investigate some critical elements that should be aware of during developing and designing new reputation systems.
Resumo:
Process mining encompasses the research area which is concerned with knowledge discovery from information system event logs. Within the process mining research area, two prominent tasks can be discerned. First of all, process discovery deals with the automatic construction of a process model out of an event log. Secondly, conformance checking focuses on the assessment of the quality of a discovered or designed process model in respect to the actual behavior as captured in event logs. Hereto, multiple techniques and metrics have been developed and described in the literature. However, the process mining domain still lacks a comprehensive framework for assessing the goodness of a process model from a quantitative perspective. In this study, we describe the architecture of an extensible framework within ProM, allowing for the consistent, comparative and repeatable calculation of conformance metrics. For the development and assessment of both process discovery as well as conformance techniques, such a framework is considered greatly valuable.
Resumo:
Reliable pollutant build-up prediction plays a critical role in the accuracy of urban stormwater quality modelling outcomes. However, water quality data collection is resource demanding compared to streamflow data monitoring, where a greater quantity of data is generally available. Consequently, available water quality data sets span only relatively short time scales unlike water quantity data. Therefore, the ability to take due consideration of the variability associated with pollutant processes and natural phenomena is constrained. This in turn gives rise to uncertainty in the modelling outcomes as research has shown that pollutant loadings on catchment surfaces and rainfall within an area can vary considerably over space and time scales. Therefore, the assessment of model uncertainty is an essential element of informed decision making in urban stormwater management. This paper presents the application of a range of regression approaches such as ordinary least squares regression, weighted least squares Regression and Bayesian Weighted Least Squares Regression for the estimation of uncertainty associated with pollutant build-up prediction using limited data sets. The study outcomes confirmed that the use of ordinary least squares regression with fixed model inputs and limited observational data may not provide realistic estimates. The stochastic nature of the dependent and independent variables need to be taken into consideration in pollutant build-up prediction. It was found that the use of the Bayesian approach along with the Monte Carlo simulation technique provides a powerful tool, which attempts to make the best use of the available knowledge in the prediction and thereby presents a practical solution to counteract the limitations which are otherwise imposed on water quality modelling.
Resumo:
Background: The 30-item USDI is a self-report measure that assesses depressive symptoms among university students. It consists of three correlated three factors: Lethargy, Cognitive-Emotional and Academic motivation. The current research used confirmatory factor analysis to asses construct validity and determine whether the original factor structure would be replicated in a different sample. Psychometric properties were also examined. Method: Participants were 1148 students (mean age 22.84 years, SD = 6.85) across all faculties from a large Australian metropolitan university. Students completed a questionnaire comprising of the USDI, the Depression Anxiety Stress Scale (DASS) and Life Satisfaction Scale (LSS). Results: The three correlated factor model was shown to be an acceptable fit to the data, indicating sound construct validity. Internal consistency of the scale was also demonstrated to be sound, with high Cronbach Alpha values. Temporal stability of the scale was also shown to be strong through test-retest analysis. Finally, concurrent and discriminant validity was examined with correlations between the USDI and DASS subscales as well as the LSS, with sound results contributing to further support the construct validity of the scale. Cut-off points were also developed to aid total score interpretation. Limitations: Response rates are unclear. In addition, the representativeness of the sample could be improved potentially through targeted recruitment (i.e. reviewing the online sample statistics during data collection, examining the representativeness trends and addressing particular faculties within the university that were underrepresented). Conclusions: The USDI provides a valid and reliable method of assessing depressive symptoms found among university students.
Resumo:
Organizations from every industry sector seek to enhance their business performance and competitiveness through the deployment of contemporary information systems (IS), such as Enterprise Systems (ERP). Investments in ERP are complex and costly, attracting scrutiny and pressure to justify their cost. Thus, IS researchers highlight the need for systematic evaluation of information system success, or impact, which has resulted in the introduction of varied models for evaluating information systems. One of these systematic measurement approaches is the IS-Impact Model introduced by a team of researchers at Queensland University of technology (QUT) (Gable, Sedera, & Chan, 2008). The IS-Impact Model is conceptualized as a formative, multidimensional index that consists of four dimensions. Gable et al. (2008) define IS-Impact as "a measure at a point in time, of the stream of net benefits from the IS, to date and anticipated, as perceived by all key-user-groups" (p.381). The IT Evaluation Research Program (ITE-Program) at QUT has grown the IS-Impact Research Track with the central goal of conducting further studies to enhance and extend the IS-Impact Model. The overall goal of the IS-Impact research track at QUT is "to develop the most widely employed model for benchmarking information systems in organizations for the joint benefit of both research and practice" (Gable, 2009). In order to achieve that, the IS-Impact research track advocates programmatic research having the principles of tenacity, holism, and generalizability through extension research strategies. This study was conducted within the IS-Impact Research Track, to further generalize the IS-Impact Model by extending it to the Saudi Arabian context. According to Hofsted (2012), the national culture of Saudi Arabia is significantly different from the Australian national culture making the Saudi Arabian culture an interesting context for testing the external validity of the IS-Impact Model. The study re-visits the IS-Impact Model from the ground up. Rather than assume the existing instrument is valid in the new context, or simply assess its validity through quantitative data collection, the study takes a qualitative, inductive approach to re-assessing the necessity and completeness of existing dimensions and measures. This is done in two phases: Exploratory Phase and Confirmatory Phase. The exploratory phase addresses the first research question of the study "Is the IS-Impact Model complete and able to capture the impact of information systems in Saudi Arabian Organization?". The content analysis, used to analyze the Identification Survey data, indicated that 2 of the 37 measures of the IS-Impact Model are not applicable for the Saudi Arabian Context. Moreover, no new measures or dimensions were identified, evidencing the completeness and content validity of the IS-Impact Model. In addition, the Identification Survey data suggested several concepts related to IS-Impact, the most prominent of which was "Computer Network Quality" (CNQ). The literature supported the existence of a theoretical link between IS-Impact and CNQ (CNQ is viewed as an antecedent of IS-Impact). With the primary goal of validating the IS-Impact model within its extended nomological network, CNQ was introduced to the research model. The Confirmatory Phase addresses the second research question of the study "Is the Extended IS-Impact Model Valid as a Hierarchical Multidimensional Formative Measurement Model?". The objective of the Confirmatory Phase was to test the validity of IS-Impact Model and CNQ Model. To achieve that, IS-Impact, CNQ, and IS-Satisfaction were operationalized in a survey instrument, and then the research model was assessed by employing the Partial Least Squares (PLS) approach. The CNQ model was validated as a formative model. Similarly, the IS-Impact Model was validated as a hierarchical multidimensional formative construct. However, the analysis indicated that one of the IS-Impact Model indicators was insignificant and can be removed from the model. Thus, the resulting Extended IS-Impact Model consists of 4 dimensions and 34 measures. Finally, the structural model was also assessed against two aspects: explanatory and predictive power. The analysis revealed that the path coefficient between CNQ and IS-Impact is significant with t-value= (4.826) and relatively strong with â = (0.426) with CNQ explaining 18% of the variance in IS-Impact. These results supported the hypothesis that CNQ is antecedent of IS-Impact. The study demonstrates that the quality of Computer Network affects the quality of the Enterprise System (ERP) and consequently the impacts of the system. Therefore, practitioners should pay attention to the Computer Network quality. Similarly, the path coefficient between IS-Impact and IS-Satisfaction was significant t-value = (17.79) and strong â = (0.744), with IS-Impact alone explaining 55% of the variance in Satisfaction, consistent with results of the original IS-Impact study (Gable et al., 2008). The research contributions include: (a) supporting the completeness and validity of IS-Impact Model as a Hierarchical Multi-dimensional Formative Measurement Model in the Saudi Arabian context, (b) operationalizing Computer Network Quality as conceptualized in the ITU-T Recommendation E.800 (ITU-T, 1993), (c) validating CNQ as a formative measurement model and as an antecedent of IS Impact, and (d) conceptualizing and validating IS-Satisfaction as a reflective measurement model and as an immediate consequence of IS Impact. The CNQ model provides a framework to perceptually measure Computer Network Quality from multiple perspectives. The CNQ model features an easy-to-understand, easy-to-use, and economical survey instrument.
Resumo:
Recent literature has argued that environmental efficiency (EE), which is built on the materials balance (MB) principle, is more suitable than other EE measures in situations where the law of mass conversation regulates production processes. In addition, the MB-based EE method is particularly useful in analysing possible trade-offs between cost and environmental performance. Identifying determinants of MB-based EE can provide useful information to decision makers but there are very few empirical investigations into this issue. This article proposes the use of data envelopment analysis and stochastic frontier analysis techniques to analyse variation in MB-based EE. Specifically, the article develops a stochastic nutrient frontier and nutrient inefficiency model to analyse determinants of MB-based EE. The empirical study applies both techniques to investigate MB-based EE of 96 rice farms in South Korea. The size of land, fertiliser consumption intensity, cost allocative efficiency, and the share of owned land out of total land are found to be correlated with MB-based EE. The results confirm the presence of a trade-off between MB-based EE and cost allocative efficiency and this finding, favouring policy interventions to help farms simultaneously achieve cost efficiency and MP-based EE.
Resumo:
Recent literature has argued that environmental efficiency (EE), which is built on the materials balance (MB) principle, is more suitable than other EE measures in situations where the law of mass conversation regulates production processes. In addition, the MB-based EE method is particularly useful in analysing possible trade-offs between cost and environmental performance. Identifying determinants of MB-based EE can provide useful information to decision makers but there are very few empirical investigations into this issue. This article proposes the use of data envelopment analysis and stochastic frontier analysis techniques to analyse variation in MB-based EE. Specifically, the article develops a stochastic nutrient frontier and nutrient inefficiency model to analyse determinants of MB-based EE. The empirical study applies both techniques to investigate MB-based EE of 96 rice farms in South Korea. The size of land, fertiliser consumption intensity, cost allocative efficiency, and the share of owned land out of total land are found to be correlated with MB-based EE. The results confirm the presence of a trade-off between MB-based EE and cost allocative efficiency and this finding, favouring policy interventions to help farms simultaneously achieve cost efficiency and MP-based EE.