362 resultados para Spectroscopic - white dwarfs
Resumo:
The mixed anion mineral parnauite Cu9[(OH)10|SO4|(AsO4)2].7H2O from two localities namely Cap Garonne Mine, Le Pradet, France and Majuba Hill mine, Pershing County, Nevada, USA has been studied by Raman spectroscopy. The Raman spectrum of the French sample is dominated by an intense band at 975 cm-1 assigned to the ν1 (SO4)2- symmetric stretching mode and Raman bands at 1077 and 1097 cm-1 may be attributed to the ν3 (SO4)2- antisymmetric stretching mode. Two Raman bands 1107 and 1126 cm-1 are assigned to carbonate CO32- symmetric stretching bands and confirms the presence of carbonate in the structure of parnauite. The comparatively sharp band for the Pershing County mineral at 976 cm-1 is assigned to the ν1 (SO4)2- symmetric stretching mode and a broad spectral profile centered upon 1097 cm-1 is attributed to the ν3 (SO4)2- antisymmetric stretching mode. Two intense bands for the Pershing County mineral at 851 and 810 cm-1 are assigned to the ν1 (AsO4)3- symmetric stretching and ν3 (AsO4)3- antisymmetric stretching modes. Two Raman bands for the French mineral observed at 725 and 777 cm-1 are attributed to the ν3 (AsO4)3- antisymmetric stretching mode. For the French mineral, a low intensity Raman band is observed at 869 cm-1 and is assigned to the ν1 (AsO4)3- symmetric stretching vibration. Chemical composition of parnauite remains open and the question may be raised is parnauite a solid solution of two or more minerals such as a copper hydroxy-arsenate and a copper hydroxy sulphate.
Resumo:
Many phosphate containing minerals are found in the Jenolan Caves. Such minerals are formed by the reaction of bat guano and clays from the caves. Among these cave minerals is the mineral taranakite (K,NH4)Al3(PO4)3(OH)•9(H2O) which has been identified by X-ray diffraction. Jenolan Caves taranakite has been characterised by Raman spectroscopy. Raman and infrared bands are assigned to H2PO4-, OH and NH stretching vibrations. By using a combination of XRD and Raman spectroscopy, the existence of taranakite in the caves has been proven.
Resumo:
Infrared and infrared emission spectroscopy were used to analyze the difference in structure and thermal behavior of two Chinese palygorskites. The position of the main bands identified in the infrared spectra of the palygorskites studied is similar for these two Chinese samples, but there are some differences in their intensity, which is significant. This discrepancy is attributed to various geological environments in different regions and the existence of impurities. The infrared emission spectra clearly show the structural changes and dehydroxylation of the palygorskites when the temperature is raised. The dehydration of the palygorskites is followed by the loss of intensity of the OH stretching vibration bands in the region 3600-3200 cm-1. Dehydroxylation is followed by the decrease in intensity in the bands between 3700 and 3550 cm-1. Dehydration of pure palygorskite was completed by 600 °C. Partial loss of coordinated water was observed at 400 °C. Infrared emission spectroscopy is an effective method to determine the stability of the mineral.
Resumo:
The International Council on Women's Health Issues (ICOWHI) is an international nonprofit association dedicated to the goal of promoting health, health care, and well-being of women and girls throughout the world through participation, empowerment, advocacy, education, and research. We are a multidisciplinary network of women's health providers, planners, and advocates from all over the globe. We constitute an international professional and lay network of those committed to improving women and girl's health and quality of life. This document provides a description of our organization mission, vision, and commitment to improving the health and well-being of women and girls globally.
Resumo:
Shattuckite Cu5(SiO3)4(OH)2 is a copper hydroxy silicate and is commonly known as a ‘healing’ mineral. Three shattuckite mineral samples from three different origins were analysed by Raman spectroscopy. Some Raman bands are common in the spectra of the minerals. Raman bands at around 890, 1058 and 1102 are described as the ν3 –SiO3 antisymmetric stretching vibrations. The Raman band at 670 cm-1 is assigned to the ν4 bending modes of the -SiO3 units and the band at around 785 cm-1is due to Si-O-Si chain stretching mode. Raman (and infrared) spectroscopy proves that water is in the molecular structure of shattuckite; thus the formula is better written as Cu5(SiO3)4(OH)2•xH2O.
Resumo:
In this article I reveal how texts produced by Aboriginal women scholars signify a racialised and gendered body that functions discursively, as an immediacy of racism in the form of white patriarchal epistemic violence (Lloyd 1991, 74). I demonstrate how this dominant racialised and gendered form of violence is an assertion of power that involves or arises from racialised knowledge by examining Dirk Moses' analysis of ‘Indigeneity’ via the Northern Territory Intervention (Spivak 1988).
Resumo:
Kinoite Ca2Cu2Si3O10(OH)4 is a mineral named after a Jesuit missionary. Raman and infrared spectroscopy have been used to characterise the structure of the mineral. The Raman spectrum is characterised by an intense sharp band at 847 cm-1 assigned to the ν1 (A1g) symmetric stretching vibration. Intense sharp bands at 951, 994 and 1000 cm-1 are assigned to the ν3 (Eu, A2u, B1g) SiO4 antisymmetric stretching vibrations. Multiple ν2 SiO4 vibrational modes indicate strong distortion of the SiO4 tetrahedra. Multiple CaO and CuO stretching bands are observed. Raman spectroscopy confirmed by infrared spectroscopy clearly shows that hydroxyl units are involved in the kinoite structure. Based upon the infrared spectra, it is proposed that water is also involved in the kinoite structure. Based upon vibrational spectroscopy, the formula of kinoite is defined as Ca2Cu2Si3O10(OH)4•xH2O.
Resumo:
The use of vibrational spectroscopic techniques to characterise historical artefacts and art works continues to grow and to provide the archaeologist and art historian with significant information with which to understand the nature and activities of previous peoples and civilizations. In addition, conservators can gain knowledge of the composition of artworks or historical objects and so are better equipped to ensure their preservation. Both infrared and Raman have been widely used. Microspectroscopy is the preferred sampling technique as it requires only a very small sample, which often can be recovered. The use of synchrotron radiation in conjunction with IR microspectroscopy is increasing because of the substantial benefits in terms of improved spatial resolution and signal-to-noise ratio. The key trend for the future is the growth in the use of portable instruments, both IR and Raman, which are becoming important because they allow non-destructive measurements to be made in situ, for example at an archaeological site or at a museum.
Resumo:
Whelanite Ca5Cu2(OH)2CO3,Si6O17•4H2O is a hydrated hydroxy mixed anion compound with both silicate and carbonate anions in the formula. The structural characterisation of the mineral whelanite remains incomplete. Whelanite is probably a neosilicate with Cu2+ in square planar coordination. Two Raman bands at 1070 and 1094 cm-1 are assigned to the ν1 symmetric stretching modes of the CO32- units. The observation of two symmetric stretching modes supports the concept of two non-equivalent CO32- units in the whelanite structure. The intense sharp Raman band at 1006 cm-1 is assigned to the ν1 (A1g) symmetric stretching vibration of the Si6O17 units. The splitting of the ν3 vibrational mode offers support to the concept that the SiO4 tetrahedron in whelanite is strongly distorted. A very intense Raman band observed at 666 cm-1 with a shoulder at 697 cm-1 is assigned to the ν4 vibrational modes. Intense Raman bands at 3534, 3556, 3550 and 3595 cm-1 are assigned to the stretching vibrations of the OH units. Low intensity Raman bands at 2910, 3187 and 3453 cm-1 are assigned to water stretching modes. Thus, vibrational spectroscopy has been used to characterise the molecular structure of whelanite. Whelanite is a mineral that could be conceived as a healing mineral
Resumo:
Planchéite Cu8Si8O22(OH)4•H2O is a hydrated copper hydroxy silicate. The objective of this work is to use Raman and infrared spectroscopy to determine the molecular structure of planchéite. Raman bands of planchéite at around 1048, 1081 and 1127 are described as the ν1 –SiO3 symmetric stretching vibrations; Raman bands at 828, 906 are attributed to the ν3 –SiO3 antisymmetric stretching vibrations. The Raman band at 699 cm-1 is assigned to the ν4 bending modes of the -SiO3 units. The intense Raman band at 3479 cm-1 is ascribed to the stretching vibration of the OH units. The Raman band at 3250 cm-1 is evidence for water in the structure. A comparison of the spectra of planchéite with that of shattuckite and chrysocolla.
Resumo:
Arsenogorceixite BaAl3AsO3(OH)(AsO4,PO4)(OH,F)6 belongs to the crandallite mineral subgroup of the alunite supergroup. Arsenogorceixite forms a continuous series of solid solutions with related minerals including gorceixite, goyazite, arsenogoyazite, plumbogummite and philipsbornite. Two minerals from (a) Germany and (b) from Ashburton Downs, Australia were analysed by Raman spectroscopy. The spectra show some commonality but the intensities of the peaks vary. Sharp intense Raman bands for the German sample, are observed at 972 and 814 cm−1 attributed to the ν1 PO43− and AsO43− symmetric stretching modes. Raman bands at 1014, 1057, 1148 and 1160 cm−1 are attributed to the ν1 PO2 symmetric stretching mode and ν3 PO43− antisymmetric stretching vibrations. Raman bands at 764 and 776 cm−1 and 758 and 756 cm−1 are assigned to the ν3 AsO43− antisymmetric stretching vibrations. For the Australian mineral, the ν1 PO43− band is found at 973 cm−1. The intensity of the arsenate bands observed at 814, 838 and 870 cm−1 is greatly enhanced. Two low intensity Raman bands at 1307 and 1332 cm−1 are assigned to hydroxyl deformation modes. The intense Raman band at 441 cm−1 with a shoulder at 462 cm−1 is assigned to the ν2 PO43− bending mode. Raman bands at 318 and 340 cm−1 are attributed to the (AsO4)3−ν2 bending. The broad band centred at 3301 cm−1 is assigned to water stretching vibrations and the sharper peak at 3473 cm−1 is assigned to the OH stretching vibrations. The observation of strong water stretching vibrations brings into question the actual formula of arsenogorceixite. It is proposed the formula is better written as BaAl3AsO3(OH)(AsO4,PO4)(OH,F)6·xH2O. The observation of both phosphate and arsenate bands provides a clear example of solid solution formation.
Resumo:
Three wardite mineral samples from different origins have been analysed by vibrational spectroscopy. The mineral is unusual in that it belongs to a unique symmetry class, namely the tetragonal-trapezohedral group. The structure of wardite contains layers of corner-linked –OH bridged MO6 octahedra stacked along the tetragonal C-axis in a four-layer sequence and linked by PO4 groups. Consequentially not all phosphate units are identical. Thus, two intense Raman bands observed at 995 and 1051 cm-1 are assigned to the ν1 PO43- symmetric stretching mode. Intense Raman bands are observed at 605 and 618 cm-1 with shoulders at 578 and 589 cm-1 are assigned to the ν4 out of plane bending modes of the PO43-. The observation of multiple bands supports the concept of non-equivalent phosphate units in the structure. Sharp infrared bands are observed at 3544 and 3611 cm-1 are attributed to the OH stretching vibrations of the hydroxyl units. Vibrational spectroscopy enables subtle details of the molecular structure of wardite to be determined.