220 resultados para Set functions.
Resumo:
Textual document set has become an important and rapidly growing information source in the web. Text classification is one of the crucial technologies for information organisation and management. Text classification has become more and more important and attracted wide attention of researchers from different research fields. In this paper, many feature selection methods, the implement algorithms and applications of text classification are introduced firstly. However, because there are much noise in the knowledge extracted by current data-mining techniques for text classification, it leads to much uncertainty in the process of text classification which is produced from both the knowledge extraction and knowledge usage, therefore, more innovative techniques and methods are needed to improve the performance of text classification. It has been a critical step with great challenge to further improve the process of knowledge extraction and effectively utilization of the extracted knowledge. Rough Set decision making approach is proposed to use Rough Set decision techniques to more precisely classify the textual documents which are difficult to separate by the classic text classification methods. The purpose of this paper is to give an overview of existing text classification technologies, to demonstrate the Rough Set concepts and the decision making approach based on Rough Set theory for building more reliable and effective text classification framework with higher precision, to set up an innovative evaluation metric named CEI which is very effective for the performance assessment of the similar research, and to propose a promising research direction for addressing the challenging problems in text classification, text mining and other relative fields.
Resumo:
It is widely acknowledged that effective asset management requires an interdisciplinary approach, in which synergies should exist between traditional disciplines such as: accounting, engineering, finance, humanities, logistics, and information systems technologies. Asset management is also an important, yet complex business practice. Business process modelling is proposed as an approach to manage the complexity of asset management through the modelling of asset management processes. A sound foundation for the systematic application and analysis of business process modelling in asset management is, however, yet to be developed. Fundamentally, a business process consists of activities (termed functions), events/states, and control flow logic. As both events/states and control flow logic are somewhat dependent on the functions themselves, it is a logical step to first identify the functions within a process. This research addresses the current gap in knowledge by developing a method to identify functions common to various industry types (termed core functions). This lays the foundation to extract such functions, so as to identify both commonalities and variation points in asset management processes. This method describes the use of a manual text mining and a taxonomy approach. An example is presented.
Resumo:
Many cell types form clumps or aggregates when cultured in vitro through a variety of mechanisms including rapid cell proliferation, chemotaxis, or direct cell-to-cell contact. In this paper we develop an agent-based model to explore the formation of aggregates in cultures where cells are initially distributed uniformly, at random, on a two-dimensional substrate. Our model includes unbiased random cell motion, together with two mechanisms which can produce cell aggregates: (i) rapid cell proliferation, and (ii) a biased cell motility mechanism where cells can sense other cells within a finite range, and will tend to move towards areas with higher numbers of cells. We then introduce a pair-correlation function which allows us to quantify aspects of the spatial patterns produced by our agent-based model. In particular, these pair-correlation functions are able to detect differences between domains populated uniformly at random (i.e. at the exclusion complete spatial randomness (ECSR) state) and those where the proliferation and biased motion rules have been employed - even when such differences are not obvious to the naked eye. The pair-correlation function can also detect the emergence of a characteristic inter-aggregate distance which occurs when the biased motion mechanism is dominant, and is not observed when cell proliferation is the main mechanism of aggregate formation. This suggests that applying the pair-correlation function to experimental images of cell aggregates may provide information about the mechanism associated with observed aggregates. As a proof of concept, we perform such analysis for images of cancer cell aggregates, which are known to be associated with rapid proliferation. The results of our analysis are consistent with the predictions of the proliferation-based simulations, which supports the potential usefulness of pair correlation functions for providing insight into the mechanisms of aggregate formation.
Resumo:
Many model-based investigation techniques, such as sensitivity analysis, optimization, and statistical inference, require a large number of model evaluations to be performed at different input and/or parameter values. This limits the application of these techniques to models that can be implemented in computationally efficient computer codes. Emulators, by providing efficient interpolation between outputs of deterministic simulation models, can considerably extend the field of applicability of such computationally demanding techniques. So far, the dominant techniques for developing emulators have been priors in the form of Gaussian stochastic processes (GASP) that were conditioned with a design data set of inputs and corresponding model outputs. In the context of dynamic models, this approach has two essential disadvantages: (i) these emulators do not consider our knowledge of the structure of the model, and (ii) they run into numerical difficulties if there are a large number of closely spaced input points as is often the case in the time dimension of dynamic models. To address both of these problems, a new concept of developing emulators for dynamic models is proposed. This concept is based on a prior that combines a simplified linear state space model of the temporal evolution of the dynamic model with Gaussian stochastic processes for the innovation terms as functions of model parameters and/or inputs. These innovation terms are intended to correct the error of the linear model at each output step. Conditioning this prior to the design data set is done by Kalman smoothing. This leads to an efficient emulator that, due to the consideration of our knowledge about dominant mechanisms built into the simulation model, can be expected to outperform purely statistical emulators at least in cases in which the design data set is small. The feasibility and potential difficulties of the proposed approach are demonstrated by the application to a simple hydrological model.
Resumo:
A spatial process observed over a lattice or a set of irregular regions is usually modeled using a conditionally autoregressive (CAR) model. The neighborhoods within a CAR model are generally formed deterministically using the inter-distances or boundaries between the regions. An extension of CAR model is proposed in this article where the selection of the neighborhood depends on unknown parameter(s). This extension is called a Stochastic Neighborhood CAR (SNCAR) model. The resulting model shows flexibility in accurately estimating covariance structures for data generated from a variety of spatial covariance models. Specific examples are illustrated using data generated from some common spatial covariance functions as well as real data concerning radioactive contamination of the soil in Switzerland after the Chernobyl accident.
An improved chemically inducible gene switch that functions in the monocotyledonous plant sugar cane
Resumo:
Chemically inducible gene switches can provide precise control over gene expression, enabling more specific analyses of gene function and expanding the plant biotechnology toolkit beyond traditional constitutive expression systems. The alc gene expression system is one of the most promising chemically inducible gene switches in plants because of its potential in both fundamental research and commercial biotechnology applications. However, there are no published reports demonstrating that this versatile gene switch is functional in transgenic monocotyledonous plants, which include some of the most important agricultural crops. We found that the original alc gene switch was ineffective in the monocotyledonous plant sugar cane, and describe a modified alc system that is functional in this globally significant crop. A promoter consisting of tandem copies of the ethanol receptor inverted repeat binding site, in combination with a minimal promoter sequence, was sufficient to give enhanced sensitivity and significantly higher levels of ethanol inducible gene expression. A longer CaMV 35S minimal promoter than was used in the original alc gene switch also substantially improved ethanol inducibility. Treating the roots with ethanol effectively induced the modified alc system in sugar cane leaves and stem, while an aerial spray was relatively ineffective. The extension of this chemically inducible gene expression system to sugar cane opens the door to new opportunities for basic research and crop biotechnology.
Resumo:
Cryptosystems based on the hardness of lattice problems have recently acquired much importance due to their average-case to worst-case equivalence, their conjectured resistance to quantum cryptanalysis, their ease of implementation and increasing practicality, and, lately, their promising potential as a platform for constructing advanced functionalities. In this work, we construct “Fuzzy” Identity Based Encryption from the hardness of the Learning With Errors (LWE) problem. We note that for our parameters, the underlying lattice problems (such as gapSVP or SIVP) are assumed to be hard to approximate within supexponential factors for adversaries running in subexponential time. We give CPA and CCA secure variants of our construction, for small and large universes of attributes. All our constructions are secure against selective-identity attacks in the standard model. Our construction is made possible by observing certain special properties that secret sharing schemes need to satisfy in order to be useful for Fuzzy IBE. We also discuss some obstacles towards realizing lattice-based attribute-based encryption (ABE).
Resumo:
To this day, realizations in the standard-model of (lossy) trapdoor functions from discrete-log-type assumptions require large public key sizes, e.g., about Θ(λ 2) group elements for a reduction from the decisional Diffie-Hellman assumption (where λ is a security parameter). We propose two realizations of lossy trapdoor functions that achieve public key size of only Θ(λ) group elements in bilinear groups, with a reduction from the decisional Bilinear Diffie-Hellman assumption. Our first construction achieves this result at the expense of a long common reference string of Θ(λ 2) elements, albeit reusable in multiple LTDF instantiations. Our second scheme also achieves public keys of size Θ(λ), entirely in the standard model and in particular without any reference string, at the cost of a slightly more involved construction. The main technical novelty, developed for the second scheme, is a compact encoding technique for generating compressed representations of certain sequences of group elements for the public parameters.
Resumo:
In Thomas Mann’s tetralogy of the 1930s and 1940s, Joseph and His Brothers, the narrator declares history is not only “that which has happened and that which goes on happening in time,” but it is also “the stratified record upon which we set our feet, the ground beneath us.” By opening up history to its spatial, geographical, and geological dimensions Mann both predicts and encapsulates the twentieth-century’s “spatial turn,” a critical shift that divested geography of its largely passive role as history’s “stage” and brought to the fore intersections between the humanities and the earth sciences. In this paper, I draw out the relationships between history, narrative, geography, and geology revealed by this spatial turn and the questions these pose for thinking about the disciplinary relationship between geography and the humanities. As Mann’s statement exemplifies, the spatial turn itself has often been captured most strikingly in fiction, and I would argue nowhere more so than in Graham Swift’s Waterland (1983) and Anne Michaels’s Fugitive Pieces (1996), both of which present space, place, and landscape as having a palpable influence on history and memory. The geographical/geological line that runs through both Waterland and Fugitive Pieces continues through Tim Robinson’s non-fictional, two-volume “topographical” history Stones of Aran. Robinson’s Stones of Aran—which is not history, not geography, and not literature, and yet is all three—constructs an imaginative geography that renders inseparable geography, geology, history, memory, and the act of writing.
Resumo:
Classical results in unconditionally secure multi-party computation (MPC) protocols with a passive adversary indicate that every n-variate function can be computed by n participants, such that no set of size t < n/2 participants learns any additional information other than what they could derive from their private inputs and the output of the protocol. We study unconditionally secure MPC protocols in the presence of a passive adversary in the trusted setup (‘semi-ideal’) model, in which the participants are supplied with some auxiliary information (which is random and independent from the participant inputs) ahead of the protocol execution (such information can be purchased as a “commodity” well before a run of the protocol). We present a new MPC protocol in the trusted setup model, which allows the adversary to corrupt an arbitrary number t < n of participants. Our protocol makes use of a novel subprotocol for converting an additive secret sharing over a field to a multiplicative secret sharing, and can be used to securely evaluate any n-variate polynomial G over a field F, with inputs restricted to non-zero elements of F. The communication complexity of our protocol is O(ℓ · n 2) field elements, where ℓ is the number of non-linear monomials in G. Previous protocols in the trusted setup model require communication proportional to the number of multiplications in an arithmetic circuit for G; thus, our protocol may offer savings over previous protocols for functions with a small number of monomials but a large number of multiplications.
Resumo:
Numeric set watermarking is a way to provide ownership proof for numerical data. Numerical data can be considered to be primitives for multimedia types such as images and videos since they are organized forms of numeric information. Thereby, the capability to watermark numerical data directly implies the capability to watermark multimedia objects and discourage information theft on social networking sites and the Internet in general. Unfortunately, there has been very limited research done in the field of numeric set watermarking due to underlying limitations in terms of number of items in the set and LSBs in each item available for watermarking. In 2009, Gupta et al. proposed a numeric set watermarking model that embeds watermark bits in the items of the set based on a hash value of the items’ most significant bits (MSBs). If an item is chosen for watermarking, a watermark bit is embedded in the least significant bits, and the replaced bit is inserted in the fractional value to provide reversibility. The authors show their scheme to be resilient against the traditional subset addition, deletion, and modification attacks as well as secondary watermarking attacks. In this paper, we present a bucket attack on this watermarking model. The attack consists of creating buckets of items with the same MSBs and determine if the items of the bucket carry watermark bits. Experimental results show that the bucket attack is very strong and destroys the entire watermark with close to 100% success rate. We examine the inherent weaknesses in the watermarking model of Gupta et al. that leave it vulnerable to the bucket attack and propose potential safeguards that can provide resilience against this attack.
Resumo:
Boolean functions and their Möbius transforms are involved in logical calculation, digital communications, coding theory and modern cryptography. So far, little is known about the relations of Boolean functions and their Möbius transforms. This work is composed of three parts. In the first part, we present relations between a Boolean function and its Möbius transform so as to convert the truth table/algebraic normal form (ANF) to the ANF/truth table of a function in different conditions. In the second part, we focus on the special case when a Boolean function is identical to its Möbius transform. We call such functions coincident. In the third part, we generalize the concept of coincident functions and indicate that any Boolean function has the coincidence property even it is not coincident.
Resumo:
Ghrelin is a peptide hormone produced in the stomach and a range of other tissues, where it has endocrine, paracrine and autocrine roles in both normal and disease states. Ghrelin has been shown to be an important growth factor for a number of tumours, including prostate and breast cancers. In this study, we examined the expression of the ghrelin axis (ghrelin and its receptor, the growth hormone secretagogue receptor, GHSR) in endometrial cancer. Ghrelin is expressed in a range of endometrial cancer tissues, while its cognate receptor, GHSR1a, is expressed in a small subset of normal and cancer tissues. Low to moderately invasive endometrial cancer cell lines were examined by RT-PCR and immunoblotting, demonstrating that ghrelin axis mRNA and protein expression correlate with differentiation status of Ishikawa, HEC1B and KLE endometrial cancer cell lines. Moreover, treatment with ghrelin potently stimulated cell proliferation and inhibited cell death. Taken together, these data indicate that ghrelin promotes the progression of endometrial cancer cells in vitro, and may contribute to endometrial cancer pathogenesis and represent a novel treatment target.
Resumo:
The M¨obius transform of Boolean functions is often involved in cryptographic design and analysis. As studied previously, a Boolean function f is said to be coincident if it is identical with its M¨obius transform fμ, i.e., f = fμ...
Resumo:
Motivated by the need of private set operations in a distributed environment, we extend the two-party private matching problem proposed by Freedman, Nissim and Pinkas (FNP) at Eurocrypt’04 to the distributed setting. By using a secret sharing scheme, we provide a distributed solution of the FNP private matching called the distributed private matching. In our distributed private matching scheme, we use a polynomial to represent one party’s dataset as in FNP and then distribute the polynomial to multiple servers. We extend our solution to the distributed set intersection and the cardinality of the intersection, and further we show how to apply the distributed private matching in order to compute distributed subset relation. Our work extends the primitives of private matching and set intersection by Freedman et al. Our distributed construction might be of great value when the dataset is outsourced and its privacy is the main concern. In such cases, our distributed solutions keep the utility of those set operations while the dataset privacy is not compromised. Comparing with previous works, we achieve a more efficient solution in terms of computation. All protocols constructed in this paper are provably secure against a semi-honest adversary under the Decisional Diffie-Hellman assumption.