194 resultados para Sequential error ratio
Resumo:
Body composition of 292 males aged between 18 and 65 years was measured using the deuterium oxide dilution technique. Participants were divided into development (n=146) and cross-validation (n=146) groups. Stature, body weight, skinfold thickness at eight sites, girth at five sites, and bone breadth at four sites were measured and body mass index (BMI), waist-to-hip ratio (WHR), and waist-to-stature ratio (WSR) calculated. Equations were developed using multiple regression analyses with skinfolds, breadth and girth measures, BMI, and other indices as independent variables and percentage body fat (%BF) determined from deuterium dilution technique as the reference. All equations were then tested in the cross-validation group. Results from the reference method were also compared with existing prediction equations by Durnin and Womersley (1974), Davidson et al (2011), and Gurrici et al (1998). The proposed prediction equations were valid in our cross-validation samples with r=0.77- 0.86, bias 0.2-0.5%, and pure error 2.8-3.6%. The strongest was generated from skinfolds with r=0.83, SEE 3.7%, and AIC 377.2. The Durnin and Womersley (1974) and Davidson et al (2011) equations significantly (p<0.001) underestimated %BF by 1.0 and 6.9% respectively, whereas the Gurrici et al (1998) equation significantly (p<0.001) overestimated %BF by 3.3% in our cross-validation samples compared to the reference. Results suggest that the proposed prediction equations are useful in the estimation of %BF in Indonesian men.
Resumo:
This thesis presents a sequential pattern based model (PMM) to detect news topics from a popular microblogging platform, Twitter. PMM captures key topics and measures their importance using pattern properties and Twitter characteristics. This study shows that PMM outperforms traditional term-based models, and can potentially be implemented as a decision support system. The research contributes to news detection and addresses the challenging issue of extracting information from short and noisy text.
Resumo:
In this paper we present a unified sequential Monte Carlo (SMC) framework for performing sequential experimental design for discriminating between a set of models. The model discrimination utility that we advocate is fully Bayesian and based upon the mutual information. SMC provides a convenient way to estimate the mutual information. Our experience suggests that the approach works well on either a set of discrete or continuous models and outperforms other model discrimination approaches.
Resumo:
Many large-scale GNSS CORS networks have been deployed around the world to support various commercial and scientific applications. To make use of these networks for real-time kinematic positioning services, one of the major challenges is the ambiguity resolution (AR) over long inter-station baselines in the presence of considerable atmosphere biases. Usually, the widelane ambiguities are fixed first, followed by the procedure of determination of the narrowlane ambiguity integers based on the ionosphere-free model in which the widelane integers are introduced as known quantities. This paper seeks to improve the AR performance over long baseline through efficient procedures for improved float solutions and ambiguity fixing. The contribution is threefold: (1) instead of using the ionosphere-free measurements, the absolute and/or relative ionospheric constraints are introduced in the ionosphere-constrained model to enhance the model strength, thus resulting in the better float solutions; (2) the realistic widelane ambiguity precision is estimated by capturing the multipath effects due to the observation complexity, leading to improvement of reliability of widelane AR; (3) for the narrowlane AR, the partial AR for a subset of ambiguities selected according to the successively increased elevation is applied. For fixing the scalar ambiguity, an error probability controllable rounding method is proposed. The established ionosphere-constrained model can be efficiently solved based on the sequential Kalman filter. It can be either reduced to some special models simply by adjusting the variances of ionospheric constraints, or extended with more parameters and constraints. The presented methodology is tested over seven baselines of around 100 km from USA CORS network. The results show that the new widelane AR scheme can obtain the 99.4 % successful fixing rate with 0.6 % failure rate; while the new rounding method of narrowlane AR can obtain the fix rate of 89 % with failure rate of 0.8 %. In summary, the AR reliability can be efficiently improved with rigorous controllable probability of incorrectly fixed ambiguities.
Resumo:
Sequential Design Molecular Weight Range Functional Monomers: Possibilities, Limits, and Challenges Block Copolymers: Combinations, Block Lengths, and Purities Modular Design End-Group Chemistry Ligation Protocols Conclusions
Resumo:
Integer ambiguity resolution is an indispensable procedure for all high precision GNSS applications. The correctness of the estimated integer ambiguities is the key to achieving highly reliable positioning, but the solution cannot be validated with classical hypothesis testing methods. The integer aperture estimation theory unifies all existing ambiguity validation tests and provides a new prospective to review existing methods, which enables us to have a better understanding on the ambiguity validation problem. This contribution analyses two simple but efficient ambiguity validation test methods, ratio test and difference test, from three aspects: acceptance region, probability basis and numerical results. The major contribution of this paper can be summarized as: (1) The ratio test acceptance region is overlap of ellipsoids while the difference test acceptance region is overlap of half-spaces. (2) The probability basis of these two popular tests is firstly analyzed. The difference test is an approximation to optimal integer aperture, while the ratio test follows an exponential relationship in probability. (3) The limitations of the two tests are firstly identified. The two tests may under-evaluate the failure risk if the model is not strong enough or the float ambiguities fall in particular region. (4) Extensive numerical results are used to compare the performance of these two tests. The simulation results show the ratio test outperforms the difference test in some models while difference test performs better in other models. Particularly in the medium baseline kinematic model, the difference tests outperforms the ratio test, the superiority is independent on frequency number, observation noise, satellite geometry, while it depends on success rate and failure rate tolerance. Smaller failure rate leads to larger performance discrepancy.
Resumo:
We investigated memories of room-sized spatial layouts learned by sequentially or simultaneously viewing objects from a stationary position. In three experiments, sequential viewing (one or two objects at a time) yielded subsequent memory performance that was equivalent or superior to simultaneous viewing of all objects, even though sequential viewing lacked direct access to the entire layout. This finding was replicated by replacing sequential viewing with directed viewing in which all objects were presented simultaneously and participants’ attention was externally focused on each object sequentially, indicating that the advantage of sequential viewing over simultaneous viewing may have originated from focal attention to individual object locations. These results suggest that memory representation of object-to-object relations can be constructed efficiently by encoding each object location separately, when those locations are defined within a single spatial reference system. These findings highlight the importance of considering object presentation procedures when studying spatial learning mechanisms.
Resumo:
The formation of vertically aligned single-crystalline silicon nanostructures via "self-organized" maskless etching in Ar+ H 2 plasmas is studied. The shape and aspect ratio can be effectively controlled by the reactive plasma composition. In the optimum parameter space, single-crystalline pyramid-like nanostructures are produced; otherwise, nanocones and nanodots are formed. This generic nanostructure formation approach does not involve any external material deposition. It is based on a concurrent sputtering, etching, hydrogen termination, and atom/radical redeposition and can be applied to other nanomaterials.
Resumo:
The results of studies on the growth of high-aspect nanostructures in low-temperature non-equilibrium plasmas of reactive gas mixtures with or without hydrogen are presented. The results suggest that the hydrogen in the reactive plasma strongly affects the length of the nanostructures. This phenomenon is explained in terms of selective hydrogen passivation of the lateral and top surfaces of the surface-supported nanostructures. The theoretical model describes the effect of the atomic hydrogen passivation on the nanostructure shape and predicts the critical hydrogen coverage of the lateral surfaces necessary to achieve the nanostructure growth with the pre-determined shape. Our results demonstrate that the use of a strongly non-equilibrium plasma is very effective in significantly improving the shape control of quasi-one-dimensional single-crystalline nanostructures.
Resumo:
Recently, a variety high-aspect-ratio nanostructures have been grown and profiled for various applications ranging from field emission transistors to gene/drug delivery devices. However, fabricating and processing arrays of these structures and determining how changing certain physical parameters affects the final outcome is quite challenging. We have developed several modules that can be used to simulate the processes of various physical vapour deposition systems from precursor interaction in the gas phase to gas-surface interactions and surface processes. In this paper, multi-scale hybrid numerical simulations are used to study how low-temperature non-equilibrium plasmas can be employed in the processing of high-aspect-ratio structures such that the resulting nanostructures have properties suitable for their eventual device application. We show that whilst using plasma techniques is beneficial in many nanofabrication processes, it is especially useful in making dense arrays of high-aspect-ratio nanostructures.
Resumo:
The present study explores reproducing the closest geometry of a high pressure ratio single stage radial-inflow turbine applied in the Sundstrans Power Systems T-100 Multipurpose Small Power Unit. The commercial software ANSYS-Vista RTD along with a built in module, BladeGen, is used to conduct a meanline design and create 3D geometry of one flow passage. Carefully examining the proposed design against the geometrical and experimental data, ANSYS-TurboGrid is applied to generate computational mesh. CFD simulations are performed with ANSYS-CFX in which three-dimensional Reynolds-Averaged Navier-Stokes equations are solved subject to appropriate boundary conditions. Results are compared with numerical and experimental data published in the literature in order to generate the exact geometry of the existing turbine and validate the numerical results against the experimental ones.
Resumo:
In this paper we propose a novel scheme for carrying out speaker diarization in an iterative manner. We aim to show that the information obtained through the first pass of speaker diarization can be reused to refine and improve the original diarization results. We call this technique speaker rediarization and demonstrate the practical application of our rediarization algorithm using a large archive of two-speaker telephone conversation recordings. We use the NIST 2008 SRE summed telephone corpora for evaluating our speaker rediarization system. This corpus contains recurring speaker identities across independent recording sessions that need to be linked across the entire corpus. We show that our speaker rediarization scheme can take advantage of inter-session speaker information, linked in the initial diarization pass, to achieve a 30% relative improvement over the original diarization error rate (DER) after only two iterations of rediarization.
Resumo:
We present a novel method for improving hierarchical speaker clustering in the tasks of speaker diarization and speaker linking. In hierarchical clustering, a tree can be formed that demonstrates various levels of clustering. We propose a ratio that expresses the impact of each cluster on the formation of this tree and use this to rescale cluster scores. This provides score normalisation based on the impact of each cluster. We use a state-of-the-art speaker diarization and linking system across the SAIVT-BNEWS corpus to show that our proposed impact ratio can provide a relative improvement of 16% in diarization error rate (DER).
Resumo:
A computationally efficient sequential Monte Carlo algorithm is proposed for the sequential design of experiments for the collection of block data described by mixed effects models. The difficulty in applying a sequential Monte Carlo algorithm in such settings is the need to evaluate the observed data likelihood, which is typically intractable for all but linear Gaussian models. To overcome this difficulty, we propose to unbiasedly estimate the likelihood, and perform inference and make decisions based on an exact-approximate algorithm. Two estimates are proposed: using Quasi Monte Carlo methods and using the Laplace approximation with importance sampling. Both of these approaches can be computationally expensive, so we propose exploiting parallel computational architectures to ensure designs can be derived in a timely manner. We also extend our approach to allow for model uncertainty. This research is motivated by important pharmacological studies related to the treatment of critically ill patients.