296 resultados para Scanning probe microscopy


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM/EDS) and X-ray diffraction (XRD) were used to characterize the morphology of synthetic goethite. The behavior of the hydroxyl/water molecular units of goethite and its thermally treated products were characterized using Fourier transform-infrared emission spectroscopy (FT-IES) and attenuated total reflectance–Fourier transform infrared (ATR–FTIR) spectroscopy. The results showed that all the expected vibrational bands between 4000 and 650 cm−1 including the resolved bands (3800–2200 cm−1) were confirmed. A band attributed to a new type of hydroxyl unit was found at 3708 cm−1 and assigned to the FeO–H stretching vibration without hydrogen bonding. This hydroxyl unit was retained up to the thermal treatment temperature of 500 °C. On the whole, seven kinds of hydroxyl units, involving three surface hydroxyls, a bulk hydroxyl, a FeO–H without hydrogen bonding, a nonstoichiometric hydroxyl and a reversed hydroxyl were observed, and three kinds of adsorbed water were found in/on goethite.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Results of an interlaboratory comparison on size characterization of SiO2 airborne nanoparticles using on-line and off-line measurement techniques are discussed. This study was performed in the framework of Technical Working Area (TWA) 34—“Properties of Nanoparticle Populations” of the Versailles Project on Advanced Materials and Standards (VAMAS) in the project no. 3 “Techniques for characterizing size distribution of airborne nanoparticles”. Two types of nano-aerosols, consisting of (1) one population of nanoparticles with a mean diameter between 30.3 and 39.0 nm and (2) two populations of non-agglomerated nanoparticles with mean diameters between, respectively, 36.2–46.6 nm and 80.2–89.8 nm, were generated for characterization measurements. Scanning mobility particle size spectrometers (SMPS) were used for on-line measurements of size distributions of the produced nano-aerosols. Transmission electron microscopy, scanning electron microscopy, and atomic force microscopy were used as off-line measurement techniques for nanoparticles characterization. Samples were deposited on appropriate supports such as grids, filters, and mica plates by electrostatic precipitation and a filtration technique using SMPS controlled generation upstream. The results of the main size distribution parameters (mean and mode diameters), obtained from several laboratories, were compared based on metrological approaches including metrological traceability, calibration, and evaluation of the measurement uncertainty. Internationally harmonized measurement procedures for airborne SiO2 nanoparticles characterization are proposed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The growth of graphene on SiC/Si substrates is an appealing alternative to the growth on bulk SiC for cost reduction and to better integrate the material with Si based electronic devices. In this paper, we present a complete in-situ study of the growth of epitaxial graphene on 3C SiC (111)/Si (111) substrates via high temperature annealing (ranging from 1125˚C to 1375˚C) in ultra high vacuum (UHV). The quality and number of graphene layers have been thoroughly investigated by using x-ray photoelectron spectroscopy (XPS), while the surface characterization have been studied by scanning tunnelling microscopy (STM). Ex-situ Raman spectroscopy measurements confirm our findings, which demonstrate the exponential dependence of the number of graphene layer from the annealing temperature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study investigates the use of patterned collectors to increase the pore size of electrospun scaffolds for enhanced cell infiltration. The morphology of the patterned scaffolds was investigated by scanning electron microscopy, which showed that the collector pattern was accurately mimicked by the electrospun fibres. We observed an enlargement in the pore size and in the pore size distribution compared with conventional electrospinning. Mechanical testing revealed that the mechanical properties could be tailored, to some extent, according to the patterning and that the patterned scaffolds were softer than standard electrospun scaffolds. When NIH 3T3 fibroblasts were seeded onto patterned collectors improved cell infiltration was observed. Cells were able to penetrate up to 250 μm into the scaffolds, compared with 30 μm for the standard scaffolds. This increase in the depth of infiltration occurred as early as 24 h post-seeding and remained constant over 7 days.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

INTRODUCTION: Our recent study indicated that subchondral bone pathogenesis in osteoarthritis (OA) is associated with osteocyte morphology and phenotypic abnormalities. However, the mechanism underlying this abnormality needs to be identified. In this study we investigated the effect of extracellular matrix (ECM) produced from normal and OA bone on osteocytic cells function. METHODS: De-cellularized matrices, resembling the bone provisional ECM secreted from primary human subchondral bone osteoblasts (SBOs) of normal and OA patients were used as a model to study the effect on osteocytic cells. Osteocytic cells (MLOY4 osteocyte cell line) cultured on normal and OA derived ECMs were analyzed by confocal microscopy, scanning electron microscopy (SEM), cell attachment assays, zymography, apoptosis assays, qRT-PCR and western blotting. The role of integrinβ1 and focal adhesion kinase (FAK) signaling pathways during these interactions were monitored using appropriate blocking antibodies. RESULTS: The ECM produced by OA SBOs contained less mineral content, showed altered organization of matrix proteins and matrix structure compared with the matrices produced by normal SBOs. Culture of osteocytic cells on these defective OA ECM resulted in a decrease of integrinβ1 expression and the de-activation of FAK cell signaling pathway, which subsequently affected the initial osteocytic cell's attachment and functions including morphological abnormalities of cytoskeletal structures, focal adhesions, increased apoptosis, altered osteocyte specific gene expression and increased Matrix metalloproteinases (MMP-2) and -9 expression. CONCLUSION: This study provides new insights in understanding how altered OA bone matrix can lead to the abnormal osteocyte phenotypic changes, which is typical in OA pathogenesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Layers (about 60-100 μm thick) of almost pure BaCuO2 (BC1), as determined using X-ray diffractometry (XRD) and scanning electron microscopy (SEM), coat the surfaces of YBa2Cu3O7-x (Y123) samples partial melt processed using a single-zone vertical furnace. The actual Cu/Ba ratio of the BC1 phase is 1.2-1.3 as determined using energy dispersive X-ray spectrometry (EDS). The nominally BC1 phase displays an exsolution of BC1.5 or BC2 in the form of thin plates (about 50-100 nm thick) along {100}-type cleavage planes or facets. The exsolved phase also fills cracks within the BC1 layer that require it to be in a molten state at some stage of processing. The samples were influenced by Pt contamination from the supporting wire, which may have stabilised the BC1.5 phase. Many of the Y123 grains have the same morphology as the exsolution domains, and run nearly parallel to the thin plates of the exsolved phases, strongly indicating that Y123 nucleation took place at the interface between the BC1 and the BC1.5 or BC2 exsolved phases. The network of nearly parallel exsolved 'channels' provides a matrix and a mechanism through which a high degree of local texture can be initiated in the material.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

YBCO thin films were fabricated by laser deposition, in situ on MgO substrates, using both O2 and N2O as process gas. Films with Tc above 90 K and jc of 106 A/cm2 at 77 K were grown in oxygen at a substrate temperature of 765 °C. Using N2O, the optimum substrate temperature was 745 °C, giving a Tc of 87 K. At lower temperatures, the films made in N2O had higher Tc (79 K) than the films made in oxygen (66 K). SEM and STM investigations of the film surfaces showed the films to consist of a comparatively smooth background surface and a distribution of larger particles. Both the particle size and the distribution density depended on the substrate temperature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Y123 samples with varying amounts of added Y211, PtO 2 and CeO 2 have been melt processed and quenched from temperatures between 960°C and 1100°C. The microstructures of the quenched samples have been characterized using a combination of x-ray diffractometry, optical microscopy, scanning electron microscopy, microprobe analysis, energy-dispersive x-ray spectroscopy and wavelength-dispersive x-ray spectroscopy. The Ba-Cu-O-rich melt undergoes complex changes as a function of temperature and time. A region of stability of BaCuO 2 (BC1) and BaCu 2O 2 (BC2) exists below 1040°C in samples of Y123 + 20 mol% Y211. Ba 2Cu 3O 5 is stabilized by rapid quenching but appears to separate into BC1 and BC2 at lower quenching rates. PtO 2 and CeO 2 additions affect the distribution and volume fractions of the two Ba-Cu-oxide phases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Samples of YBa2Cu3O7-y+20 mol% Y2BaCuO5, with thicknesses ranging between 50-250 μm, have been melt processed and rapidly quenched from temperatures between 985 and 1100°C by immersing them in liquid nitrogen. The phase composition and microstructures of these samples have been characterised using a combination of X-ray diffractometry, optical microscopy and scanning electron microscopy with energy dispersive X-ray spectroscopy. The quenched melt of samples quenched from temperatures greater than 985°C appears relatively homogeneous but consists of Ba2Cu3Ox (BC1.5) and BaCu2O2 (BC2) regions. At about 985°C, BaCuO2 (BC1) crystallises from the melt and most of the BC1.5 decomposes into BC1 and CuO or into BC1 and BC2. The crystallisation of BC1 induces segregation of elements in the melt and this is very significant for the melt texturing of YBCO.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The microstructures of the quenched melts of samples of Y123 and Y123+15-20 mol% Y211 with PtO2 and CeO2 additives have been examined with optical microscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectrometry (EDS) and X-ray Diffractometry (XRD). Significantly higher temperatures are required for the formation of dendritic or lamellar eutectic patterns throughout the samples with PtO2 and CeO2 additives as compared to samples without additives. The BaCuO2 (BCl) phase appears first in solid form and, instead of rapidly melting, is slowly dissolving or decomposing in the oxygen depleted melt. PtO2 and CeO2 additives slow down or shift to higher temperatures the dissolution or decomposition process of BCl. A larger fraction of BCl in solid form explains why samples with additives have higher viscosities and hence lower diffusivities than samples without additives. There is also a reduction in the Y solubility to about half the value in samples without additives. The mechanism that limits the Ostwald ripening of the Y211 particles is correlated to the morphology of the quenched partial melt. It is diffusion controlled for a finely mixed morphology and interface-controlled when the melt quenches into dendritic or lamellar eutectic patterns. The change in the morphology of the Y211 particles from blocky to acicular is related to an equivalent undercooling of the Y-Ba-Cu-O partial melt, particularly through the crystallization of BCl.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Samples of YBa2Cu3O7-y + 20 mol% Y2BaCuO5 have been melt processed and quenched from temperatures ranging from 975 to 1100°C. The microstructure of the samples have been characterized via a combination of x-ray diffractometry, optical microscopy, scanning electron microscopy, energy dispersive x-ray spectrometry and wavelength dispersive x-ray spectrometry. BaCuO2 (BC1) and BaCu2O2 (BC2) crystallize from the melt of samples quenched from temperatures between 985 and 1100°C in air. The average yttrium content differs for BC1 and BC2, and it is 4.3 and 5.1 at.%, respectively. Holding times of 20 hours at temperatures above or equal to 1040°C give rise to a dendritic pattern of BC1 surrounded by BC2. The complex changes of the nature of the melt as a function of temperature and time are likely to play a significant role in the mechanism of melt texturing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High-quality epitaxial YBa2Cu3O7-δ (YBCO) thin films were achieved by a modified off-axis sputtering technique with high deposition rates (3.3 nm/min). The film quality and the deposition rate depended crucially on the target-to-substrate separation. Epitaxial YBCO/NdGaO3(NGO)/YBCO trilayers were successfully grown onto SrTiO3, Y-ZrO2, and LaAlO3 substrates by dc and rf sputtering. The epitaxial relations were found to be [001] YBCO//[001]NGO, [100]YBCO, or [010] YBCO//[110]NGO and [001]YBCO//[110] NGO, [100]YBCO, or [010]YBCO//[001] NGO, where the latter orientation relationship was dominating. Subsequent top YBCO layers grew c axis oriented independently of the two epitaxial orientations of the NGO. The orientation relationships between YBCO and NGO were the same. Auger electron depth profiles and transmission electron microscopy indicated that the interdiffusion at the interface between the YBCO and NGO layers was not strong even at 740°C. The superconducting transition temperatures of the top and bottom YBCO layers were about the same as that of YBCO single layers, i.e., 87-90 K. Scanning electron microscopy of the surface morphologies of the YBCO and the NGO showed that a smaller substrate-target distance resulted in smoother films.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A generic method for the synthesis of metal-7,7,8,8-tetracyanoquinodimethane (TCNQ) charge-transfer complexes on both conducting and nonconducting substrates is achieved by photoexcitation of TCNQ in acetonitrile in the presence of a sacrificial electron donor and the relevant metal cation. The photochemical reaction leads to reduction of TCNQ to the TCNQ- monoanion. In the presence of Mx+(MeCN), reaction with TCNQ-(MeCN) leads to deposition of Mx+[TCNQ]x crystals onto a solid substrate with morphologies that are dependent on the metal cation. Thus, CuTCNQ phase I photocrystallizes as uniform microrods, KTCNQ as microrods with a random size distribution, AgTCNQ as very long nanowires up to 30 μm in length and with diameters of less than 180 nm, and Co[TCNQ]2(H2O)2 as nanorods and wires. The described charge-transfer complexes have been characterized by optical and scanning electron microscopy and IR and Raman spectroscopy. The CuTCNQ and AgTCNQ complexes are of particular interest for use in memory storage and switching devices. In principle, this simple technique can be employed to generate all classes of metal−TCNQ complexes and opens up the possibility to pattern them in a controlled manner on any type of substrate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The study of the electrodeposition of polycrystalline gold in aqueous solution is important from the viewpoint that in electrocatalysis applications ill-defined micro- and nanostructured surfaces are often employed. In this work, the morphology of gold was controlled by the electrodeposition potential and the introduction of Pb(CH3COO)2•3H2O into the plating solution to give either smooth or nanostructured gold crystallites or large dendritic structures which have been characterized by scanning electron microscopy (SEM). The latter structures were achieved through a novel in situ galvanic replacement of lead with AuCl4−(aq) during the course of gold electrodeposition. The electrochemical behavior of electrodeposited gold in the double layer region was studied in acidic and alkaline media and related to electrocatalytic performance for the oxidation of hydrogen peroxide and methanol. It was found that electrodeposited gold is a significantly better electrocatalyst than a polished gold electrode; however, performance is highly dependent on the chosen deposition parameters. The fabrication of a deposit with highly active surface states, comparable to those achieved at severely disrupted metal surfaces through thermal and electrochemical methods, does not result in the most effective electrocatalyst. This is due to significant premonolayer oxidation that occurs in the double layer region of the electrodeposited gold. In particular, in alkaline solution, where gold usually shows the most electrocatalytic activity, these active surface states may be overoxidized and inhibit the electrocatalytic reaction. However, the activity and morphology of an electrodeposited film can be tailored whereby electrodeposited gold that exhibits nanostructure within the crystallites on the surface demonstrated enhanced electrocatalytic activity compared to smaller smooth gold crystallites and larger dendritic structures in potential regions well within the double layer region.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electrochemical reduction of TCNQ to TCNQ•- in acetonitrile in the presence of [Cu(MeCN)4]+ has been undertaken at boron-doped diamond (BDD) and indium tin oxide (ITO) electrodes. The nucleation and growth process at BDD is similar to that reported previously at metal electrodes. At an ITO electrode, the electrocrystallization of more strongly adhered, larger, branched, needle-shaped phase I CuTCNQ crystals is detected under potential step conditions and also when the potential is cycled over the potential range of 0.7 to −0.1 V versus Ag/AgCl (3 M KCl). Video imaging can be used at optically transparent ITO electrodes to monitor the growth stage of the very large branched crystals formed during the course of electrochemical experiments. Both in situ video imaging and ex situ X-ray diffraction and scanning electron microscopy (SEM) data are consistent with the nucleation of CuTCNQ taking place at a discrete number of preferred sites on the ITO surface. At BDD electrodes, ex situ optical images show that the preferential growth of CuTCNQ occurs at the more highly conducting boron-rich areas of the electrode, within which there are preferred sites for CuTCNQ formation.