171 resultados para SLIP COATING


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Porosity is one of the key parameters of the macroscopic structure of porous media, generally defined as the ratio of the free spaces occupied (by the volume of air) within the material to the total volume of the material. Porosity is determined by measuring skeletal volume and the envelope volume. Solid displacement method is one of the inexpensive and easy methods to determine the envelope volume of a sample with an irregular shape. In this method, generally glass beads are used as a solid due to their uniform size, compactness and fluidity properties. The smaller size of the glass beads means that they enter into the open pores which have a larger diameter than the glass beads. Although extensive research has been carried out on porosity determination using displacement method, no study exists which adequately reports micro-level observation of the sample during measurement. This study set out with the aim of assessing the accuracy of solid displacement method of bulk density measurement of dried foods by micro-level observation. Solid displacement method of porosity determination was conducted using a cylindrical vial (cylindrical plastic container) and 57 µm glass beads in order to measure the bulk density of apple slices at different moisture contents. A scanning electron microscope (SEM), a profilometer and ImageJ software were used to investigate the penetration of glass beads into the surface pores during the determination of the porosity of dried food. A helium pycnometer was used to measure the particle density of the sample. Results show that a significant number of pores were large enough to allow the glass beads to enter into the pores, thereby causing some erroneous results. It was also found that coating the dried sample with appropriate coating material prior to measurement can resolve this problem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This new volume, Exploring with Grammar in the Primary Years (Exley, Kevin & Mantei, 2014), follows on from Playing with Grammar in the Early Years (Exley & Kervin, 2013). We extend our thanks to the ALEA membership for their take up of the first volume and the vibrant conversations around our first attempt at developing a pedagogy for the teaching of grammar in the early years. Your engagement at locally held ALEA events has motivated us to complete this second volume and reassert our interest in the pursuit of socially-just outcomes in the primary years. As noted in Exley and Kervin (2013), we believe that mastering a range of literacy competences includes not only the technical skills for learning, but also the resources for viewing and constructing the world (Freire and Macdeo, 1987). Rather than seeing knowledge about language as the accumulation of technical skills alone, the viewpoint to which we subscribe treats knowledge about language as a dialectic that evolves from, is situated in, and contributes to active participation within a social arena (Halliday, 1978). We acknowledge that to explore is to engage in processes of discovery as we look closely and examine the opportunities before us. As such, we draw on Janks’ (2000; 2014) critical literacy theory to underpin many of the learning experiences in this text. Janks (2000) argues that effective participation in society requires knowledge about how the power of language promotes views, beliefs and values of certain groups to the exclusion of others. Powerful language users can identify not only how readers are positioned by these views, but also the ways these views are conveyed through the design of the text, that is, the combination of vocabulary, syntax, image, movement and sound. Similarly, powerful designers of texts can make careful modal choices in written and visual design to promote certain perspectives that position readers and viewers in new ways to consider more diverse points of view. As the title of our text suggests, our activities are designed to support learners in exploring the design of texts to achieve certain purposes and to consider the potential for the sharing of their own views through text production. In Exploring with Grammar in the Primary Years, we focus on the Year 3 to Year 6 grouping in line with the Australian Curriculum, Assessment and Reporting Authority’s (hereafter ACARA) advice on the ‘nature of learners’ (ACARA, 2014). Our goal in this publication is to provide a range of highly practical strategies for scaffolding students’ learning through some of the Content Descriptions from the Australian Curriculum: English Version 7.2, hereafter AC:E (ACARA, 2014). We continue to express our belief in the power of using whole texts from a range of authentic sources including high quality children’s literature, the internet, and examples of community-based texts to expose students to the richness of language. Taking time to look at language patterns within actual texts is a pathway to ‘…capture interest, stir the imagination and absorb the [child]’ into the world of language and literacy (Saxby, 1993, p. 55). It is our intention to be more overt this time and send a stronger message that our learning experiences are simply ‘sample’ activities rather than a teachers’ workbook or a program of study to be followed. We’re hoping that teachers and students will continue to explore their bookshelves, the internet and their community for texts that provide powerful opportunities to engage with language-based learning experiences. In the following three sections, we have tried to remain faithful to our interpretation of the AC:E Content Descriptions without giving an exhaustive explanation of the grammatical terms. This recently released curriculum offers a new theoretical approach to building students’ knowledge about language. The AC:E uses selected traditional terms through an approach developed in systemic functional linguistics (see Halliday and Matthiessen, 2004) to highlight the dynamic forms and functions of multimodal language in texts. For example, the following statement, taken from the ‘Language: Knowing about the English language’ strand states: English uses standard grammatical terminology within a contextual framework, in which language choices are seen to vary according to the topics at hand, the nature and proximity of the relationships between the language users, and the modalities or channels of communication available (ACARA, 2014). Put simply, traditional grammar terms are used within a functional framework made up of field, tenor, and mode. An understanding of genre is noted with the reference to a ‘contextual framework’. The ‘topics at hand’ concern the field or subject matter of the text. The ‘relationships between the language users’ is a description of tenor. There is reference to ‘modalities’, such as spoken, written or visual text. We posit that this innovative approach is necessary for working with contemporary multimodal and cross-cultural texts (see Exley & Mills, 2012). Other excellent tomes, such as Derewianka (2011), Humphrey, Droga and Feez (2012), and Rossbridge and Rushton (2011) provide more comprehensive explanations of this unique metalanguage, as does the AC:E Glossary. We’ve reproduced some of the AC:E Glossary at the end of this publication. We’ve also kept the same layout for our learning experiences, ensuring that our teacher notes are not only succinct but also prudent in their placement. Each learning experience is connected to a Content Description from the AC:E and contains an experience with an identified purpose, suggested resource text and a possible sequence for the experience that always commences with an orientation to text followed by an examination of a particular grammatical resource. Our plans allow for focused discussion, shared exploration and opportunities to revisit the same text for the purpose of enhancing meaning making. Some learning experiences finish with deconstruction of a stimulus text while others invite students to engage in the design of new texts. We encourage you to look for opportunities in your own classrooms to move from text deconstruction to text design. In this way, students can express not only their emerging grammatical understandings, but also the ways they might position readers or viewers through the creation of their own texts. We expect that each of these learning experiences will vary in the time taken. Some may indeed take a couple if not a few teaching episodes to work through, especially if students are meeting a concept or a pedagogical strategy for the first time. We hope you use as much, or as little, of each experience as is needed for your students. We do not want the teaching of grammar to slip into a crisis of irrelevance or to be seen as a series of worksheet drills with finite answers. We firmly believe that strategies for effective deconstruction and design practice, however, have much portability. We three are very keen to hear from teachers who are adopting and adapting these learning experiences in their classrooms. Please email us on b.exley@qut.edu.au, lkervin@uow.edu.au or jessicam@ouw.edu.au. We’d love to continue the conversation with you over time. Beryl Exley, Lisa Kervin & Jessica Mantei

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Achieving the combination of delayed and immediate release of a vaccine from a delivery device without applying external triggers remains elusive in implementing single administration vaccination strategies. Here a means of vaccine delivery is presented, which exploits osmosis to trigger delayed burst release of an active compound. Poly(-caprolactone) capsules of 2 mm diameter were prepared by dip-coating, and their burst pressure and release characteristics were evaluated. Burst pressures (in bar) increased with wall thickness (t in mm) following Pburst = 131.t + 3.4 (R2 = 0.93). Upon immersion in PBS, glucose solution-filled capsules burst after 8.7 ± 2.9 days. Copolymers of hydrophobic  -caprolactone and hydrophilic polyethylene glycol were synthesized and their physico-chemical properties were assessed. With increasing hydrophilic content, the copolymer capsules showed increased water uptake rates and maximum weight increase, while the burst release was earlier: 5.6 ± 2.0 days and 1.9 ± 0.2 days for 5 and 10 wt% polyethylene glycol, respectively. The presented approach enables the reproducible preparation of capsules with high versatility in materials and properties, while these vaccine delivery vehicles can be prepared separately from, and independently of the active compound.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A curvilinear thin film model is used to simulate the motion of droplets on a virtual leaf surface, with a view to better understand the retention of agricultural sprays on plants. The governing model, adapted from Roy et al. (2002 J. Fluid Mech. 454, 235–261) with the addition of a disjoining pressure term, describes the gravity- and curvature driven flow of a small droplet on a complex substrate: a cotton leaf reconstructed from digitized scan data. Coalescence is the key mechanism behind spray coating of foliage, and our simulations demonstrate that various experimentally observed coalescence behaviours can be reproduced qualitatively. By varying the contact angle over the domain, we also demonstrate that the presence of a chemical defect can act as an obstacle to the droplet’s path, causing break-up. In simulations on the virtual leaf, it is found that the movement of a typical spray size droplet is driven almost exclusively by substrate curvature gradients. It is not until droplet mass is sufficiently increased via coalescence that gravity becomes the dominating force.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Insulated Rail Joints (IRJs) are safety critical component of the automatic block signalling and broken rail detection systems. IRJs exhibit several failure modes due to complex interaction between the railhead ends and the wheel tread near the gap. These localised zones could not be monitored using automatic sensing devices and hence are resorted to visual inspection only, which is error prone and expensive. In Australia alone currently there are 50,000 IRJs across 80,000 km of rail track. The significance of the problem around the world could thus be realised as there exists one IRJ for each 1.6 km track length. IRJs exhibit extremely low and variable service life; further the track substructure underneath IRJs degrade faster. Thus presence of the IRJs incur significant costs to track maintenance. IRJ failures have also contributed to some train derailments and various traffic disruptions in rail lines. This paper reports a systematic research carried out over seven years on the mechanical behaviour of IRJs for practically relevant outcomes. The research has scientifically established that stiffening the track bed for reduction in impact force is an ill-conceived concept and the most effective method is to reduce the gap size. Further it is established that hardening the railhead ends through laser coating (or other) cannot adequately address the metal flow problem in the long run; modification of the railhead profile is the only appropriate technique to completely eliminate the problem. Part of these outcomes has been adopted by the rail infrastructure owners in Australia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Do you know how to drive a train? If you don’t you probably believe that you have a fair idea of what it’s all about. Forget what you know, or think you know. Trains are heavy and fast but they feel and handle like driving on ice so they take a long time to stop. The braking distances for a typical piece of track are unlike anything you will have experienced before. With that in mind, imagine you were driving with a bit of dew, or grease, or millipede over the track. You would lose traction and slip everywhere. To avoid this, you would need a compensatory driving strategy. You could drive more slowly, or brake sooner, or change how you brake. Your experience and intuition would lead the way. Folks, this is why it’s called “driving by the seat of your pants”...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The extreme diversity of conditions acting on railways necessitates a variety of experimental approaches to study the critical wear mechanisms that present themselves at the contact interface. This work investigates the effects of contact pressure and geometry in rolling-contact wear tests by using discs with different radii of curvature to simulate the varying contact conditions that may be typically found in the field. It is commonly adapted to line contact interface as it has constant contact pressure. But practical scenario of the rail wheel interface, the contact area increase and contact pressure change as tracks worn off. The tests were conducted without any significant amount of traction, but micro slip was still observed due to contact deformation. Moreover, variation of contact pressure was observed due to contact patch elongation and diameter reduction. Rolling contact fatigue, adhesive and sliding wear were observed on the curved contact interface. The development of different wear regimes and material removal phenomena were analysed using microscopic images in order to broaden the understanding of the wear mechanisms occurring in the rail-wheel contact.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Research on development of efficient passivation materials for high performance and stable quantum dot sensitized solar cells (QDSCs) is highly important. While ZnS is one of the most widely used passivation material in QDSCs, an alternative material based on ZnSe which was deposited on CdS/CdSe/TiO2 photoanode to form a semi-core/shell structure has been found to be more efficient in terms of reducing electron recombination in QDSCs in this work. It has been found that the solar cell efficiency was improved from 1.86% for ZnSe0 (without coating) to 3.99% using 2 layers of ZnSe coating (ZnSe2) deposited by successive ionic layer adsorption and reaction (SILAR) method. The short circuit current density (Jsc) increased nearly 1-fold (from 7.25 mA/cm2 to13.4 mA/cm2), and the open circuit voltage (Voc) was enhanced by 100 mV using ZnSe2 passivation layer compared to ZnSe0. Studies on the light harvesting efficiency (ηLHE) and the absorbed photon-to-current conversion efficiency (APCE) have revealed that the ZnSe coating layer caused the enhanced ηLHE at wavelength beyond 500 nm and a significant increase of the APCE over the spectrum 400−550 nm. A nearly 100% APCE was obtained with ZnSe2, indicating the excellent charge injection and collection process in the device. The investigation on charge transport and recombination of the device has indicated that the enhanced electron collection efficiency and reduced electron recombination should be responsible for the improved Jsc and Voc of the QDSCs. The effective electron lifetime of the device with ZnSe2 was nearly 6 times higher than ZnSe0 while the electron diffusion coefficient was largely unaffected by the coating. Study on the regeneration of QDs after photoinduced excitation has indicated that the hole transport from QDs to the reduced species (S2−) in electrolyte was very efficient even when the QDs were coated with a thick ZnSe shell (three layers). For comparison, ZnS coated CdS/CdSe sensitized solar cell with optimum shell thickness was also fabricated, which generated a lower energy conversion efficiency (η = 3.43%) than the ZnSe based QDSC counterpart due to a lower Voc and FF. This study suggests that ZnSe may be a more efficient passivation layer than ZnS, which is attributed to the type II energy band alignment of the core (CdS/CdSe quantum dots) and passivation shell (ZnSe) structure, leading to more efficient electron−hole separation and slower electron recombination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human genome project was a grand scientific enterprise which attracted both hyperbole and ridicule alike. The project was lauded as “the moon shot of the life sciences”, the “holy grail of man”, “the code of codes”, and “the book of life”. Such rhetoric has also received scorn. President George Bush senior managed to deflate the pretensions of the project with the accidental slip that it was the “human gnome initiative”. In The Sequence, Kevin Davies seeks to go beyond such metaphors, and provide a candid and honest account of the race of the human genome project. The author is indebted to the authoritative book The Gene Wars, which considered the early struggles over the human genome project. Robert Cook-Deegan observes that there was initially much debate over whether there should be a Human Genome Project at all: The debate became one of “big” science versus “small” science. The reliance on systematic technology development and goal-directed gene-mapping efforts presaged a new style for biology, one that elicited excitement from those attracted to whiz-bang technologies but drew gasps of revulsion from those who aspired to cultivate biology on a more modest scale and with decentralized organisation. The battle was, among other things, over whose vision would control the budget and which scientific aesthetic would prevail.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A number of coating materials have been developed over past two decades seeking to improve the osseointegration of orthopedic metal implants. Despite the many candidate materials trialed, their low rate of translation into clinical applications suggests there is room for improving the current strategies for their development. We therefore propose that the ideal coating material(s) should possess the following three properties: (i) high bonding strength, (ii) release of functional ions, and (iii) favourable osteoimmunomodulatory effects. To test this proposal, we developed clinoenstatite (CLT, MgSiO3), which as a coating material has high bonding strength, cytocompability and immunomodulatory effects that are favourable for in vivo osteogenesis. The bonding strength of CLT coatings was 50.1 ± 3.2 MPa, more than twice that of hydroxyapatite (HA) coatings, at 23.5 ± 3.5 MPa. CLT coatings released Mg and Si ions, and compared to HA coatings, induced an immunomodulation more conducive for osseointegration, demonstrated by downregurelation of pro-inflammatory cytokines, enhancement of osteogenesis, and inhibition of osteoclastogenesis. In vivo studies demonstrated that CLT coatings improved osseointegration with host bone, as shown by the enhanced biomechanical strength and increased de novo bone formation, when compared with HA coatings. These results support the notion that coating materials with the proposed properties can induce an in vivo environment better suited for osseointegration. These properties could, therefore, be fundamental when developing high-performance coating materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research investigated the use of DNA fingerprinting to characterise the bacteria Streptococcus pneumoniae or pneumococcus, and hence gain insight into the development of new vaccines or antibiotics. Different bacterial DNA fingerprinting methods were studied, and a novel method was developed and validated, which characterises different cell coatings that pneumococci produce. This method was used to study the epidemiology of pneumococci in Queensland before and after the introduction of the current pneumococcal vaccine. This study demonstrated that pneumococcal disease is highly prevalent in children under four years, that the bacteria can `switch' its cell coating to evade the vaccine, and that some DNA fingerprinting methods are more discriminatory than others. This has an impact on understanding which strains are more prone to cause invasive disease. Evidence of the excellent research findings have been published in high impact internationally refereed journals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The intervertebral disc (IVD) is a unique soft tissue structure which provides structural support and flexibility in the axial skeleton of vertebrates. From a structural perspective, the disc behaves somewhat like a thick walled pressure vessel, where the walls are comprised of a series of composite annular rings (lamellae). However, a prior study (Marchand and Ahmed, 1990) found a high proportion of circumferentially discontinuous lamellae in human lumbar IVDs. The presence of these discontinuities raises important structural questions, because discontinuous lamellae cannot withstand high nucleus pressures via the generation of circumferential (hoop) stress. A possible alternative mechanism may be that inter-lamellar cohesion allows shear stress transfer between adjacent annular layers. The aim of the present study was therefore to investigate the importance of inter-lamellar shear resistance in the intervertebral disc. This work found that inter-lamellar shear resistance has a strong influence on the compressive stiffness of the intervertebral disc, with a change in interface condition from tied (no slip) to frictionless (no shear resistance) reducing disc compressive stiffness by 40%. However, it appears that substantial inter-lamellar shear resistance is present in the bovine tail disc. Decreases in inter-lamellar shear resistance due to degradation of bridging collagenous or elastic fibre structures could therefore be an important part of the process of disc degeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work investigates the effects of contact pressure and geometry in rolling-contact wear tests by using discs with different radii of curvature to simulate the varying contact conditions that may be typically found in the field. The tests were conducted without any significant amount of traction, but micro slip was still observed due to contact deformation. Moreover, variation of contact pressure was observed due to contact patch elongation and diameter reduction. Rolling contact fatigue, adhesive and sliding wear were observed on the curved contact interface. The development of different wear regimes and material removal phenomena were analyzed using microscopic images in order to broaden the understanding of the wear mechanisms occurring in the rail-wheel contact.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrospun nanofiber meshes have emerged as a new generation of scaffold membranes possessing a number of features suitable for tissue regeneration. One of these features is the flexibility to modify their structure and composition to orchestrate specific cellular responses. In this study, we investigated the effects of nanofiber orientation and surface functionalization on human mesenchymal stem cell (hMSC) migration and osteogenic differentiation. We used an in vitro model to examine hMSC migration into a cell-free zone on nanofiber meshes and mitomycin C treatment to assess the contribution of proliferation to the observed migration. Poly (ɛ-caprolactone) meshes with oriented topography were created by electrospinning aligned nanofibers on a rotating mandrel, while randomly oriented controls were collected on a stationary collector. Both aligned and random meshes were coated with a triple-helical, type I collagen-mimetic peptide, containing the glycine-phenylalanine-hydroxyproline-glycine-glutamate-arginine (GFOGER) motif. Our results indicate that nanofiber GFOGER peptide functionalization and orientation modulate cellular behavior, individually, and in combination. GFOGER significantly enhanced the migration, proliferation, and osteogenic differentiation of hMSCs on nanofiber meshes. Aligned nanofiber meshes displayed increased cell migration along the direction of fiber orientation compared to random meshes; however, fiber alignment did not influence osteogenic differentiation. Compared to each other, GFOGER coating resulted in a higher proliferation-driven cell migration, whereas fiber orientation appeared to generate a larger direct migratory effect. This study demonstrates that peptide surface modification and topographical cues associated with fiber alignment can be used to direct cellular behavior on nanofiber mesh scaffolds, which may be exploited for tissue regeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIM: This study investigated the ability of an osteoconductive biphasic scaffold to simultaneously regenerate alveolar bone, periodontal ligament and cementum. MATERIALS AND METHODS: A biphasic scaffold was built by attaching a fused deposition modelled bone compartment to a melt electrospun periodontal compartment. The bone compartment was coated with a calcium phosphate (CaP) layer for increasing osteoconductivity, seeded with osteoblasts and cultured in vitro for 6 weeks. The resulting constructs were then complemented with the placement of PDL cell sheets on the periodontal compartment, attached to a dentin block and subcutaneously implanted into athymic rats for 8 weeks. Scanning electron microscopy, X-ray diffraction, alkaline phosphatase and DNA content quantification, confocal laser microscopy, micro computerized tomography and histological analysis were employed to evaluate the scaffold's performance. RESULTS: The in vitro study showed that alkaline phosphatase activity was significantly increased in the CaP-coated samples and they also displayed enhanced mineralization. In the in vivo study, significantly more bone formation was observed in the coated scaffolds. Histological analysis revealed that the large pore size of the periodontal compartment permitted vascularization of the cell sheets, and periodontal attachment was achieved at the dentin interface. CONCLUSIONS: This work demonstrates that the combination of cell sheet technology together with an osteoconductive biphasic scaffold could be utilized to address the limitations of current periodontal regeneration techniques.