445 resultados para SINGLE-PARTICLE RELAXATION
Resumo:
Reduced element spacing in antenna arrays gives rise to strong mutual coupling between array elements and may cause significant performance degradation. These effects can be alleviated by introducing a decoupling network consisting of interconnected reactive elements. The existing design approach for the synthesis of a decoupling network for circulant symmetric arrays allows calculation of element values using closed-form expressions, but the resulting circuit configuration requires multilayer technology for implementation. In this paper, a new structure for the decoupling of circulant symmetric arrays of more than four elements is presented. Element values are no longer obtained in closed form, but the resulting circuit is much simpler and can be implemented on a single layer.
Resumo:
In this paper, a comprehensive planning methodology is proposed that can minimize the line loss, maximize the reliability and improve the voltage profile in a distribution network. The injected active and reactive power of Distributed Generators (DG) and the installed capacitor sizes at different buses and for different load levels are optimally controlled. The tap setting of HV/MV transformer along with the line and transformer upgrading is also included in the objective function. A hybrid optimization method, called Hybrid Discrete Particle Swarm Optimization (HDPSO), is introduced to solve this nonlinear and discrete optimization problem. The proposed HDPSO approach is a developed version of DPSO in which the diversity of the optimizing variables is increased using the genetic algorithm operators to avoid trapping in local minima. The objective function is composed of the investment cost of DGs, capacitors, distribution lines and HV/MV transformer, the line loss, and the reliability. All of these elements are converted into genuine dollars. Given this, a single-objective optimization method is sufficient. The bus voltage and the line current as constraints are satisfied during the optimization procedure. The IEEE 18-bus test system is modified and employed to evaluate the proposed algorithm. The results illustrate the unavoidable need for optimal control on the DG active and reactive power and capacitors in distribution networks.
Resumo:
A basic understanding of the relationships between rainfall intensity, duration of rainfall and the amount of suspended particles in stormwater runoff generated from road surfaces has been gained mainly from past washoff experiments using rainfall simulators. Simulated rainfall was generally applied at constant intensities, whereas rainfall temporal patterns during actual storms are typically highly variable. This paper discusses a rationale for the application of the constant-intensity washoff concepts to actual storm event runoff. The rationale is tested using suspended particle load data collected at a road site located in Toowoomba, Australia. Agreement between the washoff concepts and measured data is most consistent for intermediate-duration storms (duration <5 h and >1 h). Particle loads resulting from these storm events increase linearly with average rainfall intensity. Above a threshold intensity, there is evidence to suggest a constant or plateau particle load is reached. The inclusion of a peak discharge factor (maximum 6 min rainfall intensity) enhances the ability to predict particle loads.
Resumo:
In this paper, a plasmonic “ac Wheatstone bridge” circuit is proposed and theoretically modeled for the first time. The bridge circuit consists of three metallic nanoparticles, shaped as rectangular prisms, with two nanoparticles acting as parallel arms of a resonant circuit and the third bridging nanoparticle acting as an optical antenna providing an output signal. Polarized light excites localized surface plasmon resonances in the two arms of the circuit, which generate an optical signal dependent on the phase-sensitive excitations of surface plasmons in the antenna. The circuit is analyzed using a plasmonic coupling theory and numerical simulations. The analyses show that the plasmonic circuit is sensitive to phase shifts between the arms of the bridge and has the potential to detect the presence of single molecules.
Resumo:
This study aimed to explore resilience and wellbeing among a group of eight refugee women originating from several countries (mainly African) and living in Brisbane, most of whom were single mothers. To challenge mostly quantitative and gender-blind explorations of mental health concepts among refugee groups, the project sought an emic and contextual understanding of resilience and wellbeing. Established perspectives, while useful, tend to overlook the complexities of refugee mental health experiences and can neglect the dense nature of individual stories. The purpose of my study was to contest relatively simplistic narratives of mental health constructs that tend to dominate migrant and refugee studies and influence practice paradigms in the human services field. In this ethnographic exploration of mental health constructs conducted in 2008 and 2009, the use of in-depth interviews, participant observations, and visual ethnographic elements provided an opportunity for refugee women to tell their own stories. The participants’ unique narratives of pre- and post-migration experiences, shaped by specific gender, age, social, cultural and political aspects prevailing in their lives, yielded ‘thick’ ethnographic description (Geertz, 1973) of their social worlds. The findings explored in this study, namely language issues, the impact of community dynamics, and the single status of refugee women, clearly demonstrate that mental health constructs are fluid, multifaceted and complex in reality. In fact, language, community dynamics, and being a single mother, represented both opportunities and barriers in the lives of participants. In some contexts, these factors were conducive to resilience and wellbeing, while in other circumstances, these three elements acted as a hindrance to positive mental health outcomes. There are multiple dimensions to the findings, signifying that the social worlds of refugee women cannot be simplified using set definitions and neat notions of resilience and wellbeing. Instead, the intricacies and complexities embedded in the mundane of the everyday highlight novel conceptualisations of resilience and wellbeing. Based on the particular circumstances of single refugee mothers, whose experiences differ from that of married women, this thesis presents novel articulations of mental health constructs, as an alternative view to existing trends in the literature on refugee issues. Rich and multi-dimensional meanings associated with the socio-cultural determinants of mental health emerged in the process. This thesis’ findings highlight a significant gap in diasporic studies as well as simplistic assumptions about refugee women’s resettlement experiences. Single refugee women’s distinct issues are so complex and dense, that a contextual approach is critical to yield accurate depictions of their circumstances. It is therefore essential to understand refugee lived experiences within broader socio-political contexts to truly appreciate the depth of these narratives. In this manner, critical aspects salient to refugee journeys can inform different understandings of resilience, wellbeing and mental health, and shape contemporary policy and human service practice paradigms.