481 resultados para Road extraction
Resumo:
The International Road Assessment Program (iRAP) is a not-for-profit organisation that works in partnership with governments and non-government organisations in all parts of the world to make roads safe. The iRAP Malaysia pilot study on 3700km of road identified the potential to prevent 31,800 deaths and serious injuries over the next 20 years from proven engineering improvements. To help ensure the iRAP data and results are available to planners and engineers, iRAP, together with staff from the Centre for Accident Research and Road Safety – Queensland (CARRS-Q) and the Malaysian Institute of Road Safety Research (MIROS), developed a five-day iRAP training course that covers the background, theory and practical application of iRAP protocols, with a special focus on Malaysian case studies. Funding was provided by a competitive grant from the Australia-Malaysia Institute.
Resumo:
The current research aimed to profile off-road riders to identify specific sub-groups in relation to their risk-related behaviours and perceptions. A total of 235 adults from the Australian state of Queensland who had ridden a motorcycle or ATV off-road in the last 12 months were recruited. A cluster analysis was applied to the survey data. Two distinct clusters of riders were identified, which corresponded with the self-report of injury from an off-road riding crash in the prior 12 months. The injured cluster had a significantly higher mean risk propensity and use of safety equipment, though did not differ on self-reported risk taking. The injured cluster as a whole included a higher percentage of males, was younger, and rode more often for recreational or competitive purposes than the non-crash involved cluster. The results indicate that the crash cluster may be both more aware of the potential risks of riding and more willing to ride in a riskier manner.
Resumo:
Automated analysis of the sentiments presented in online consumer feedbacks can facilitate both organizations’ business strategy development and individual consumers’ comparison shopping. Nevertheless, existing opinion mining methods either adopt a context-free sentiment classification approach or rely on a large number of manually annotated training examples to perform context sensitive sentiment classification. Guided by the design science research methodology, we illustrate the design, development, and evaluation of a novel fuzzy domain ontology based contextsensitive opinion mining system. Our novel ontology extraction mechanism underpinned by a variant of Kullback-Leibler divergence can automatically acquire contextual sentiment knowledge across various product domains to improve the sentiment analysis processes. Evaluated based on a benchmark dataset and real consumer reviews collected from Amazon.com, our system shows remarkable performance improvement over the context-free baseline.
Resumo:
Road deposited solids are a mix of pollutants originating from a range of anthropogenic sources common to urban land uses and soil inputs from surrounding areas. These particles accumulate potentially toxic pollutants thereby posing a threat to receiving waters. Reliable estimation of sources of particulate pollutants in build-up and quantification of particle composition is important for the development of best management practices for stormwater quality mitigation. The research study analysed build-up pollutants from sixteen different urban road surfaces and soil from four background locations. The road surfaces were selected from residential, industrial and commercial land uses from four suburbs in Gold Coast, Australia. Collected build-up samples were analysed for solids load, organic matter and mineralogy. The soil samples were analysed for mineralogy. Quantitative and qualitative analysis of mineralogical data, along with multivariate data analysis were employed to identify the relative source contributions to road deposited solids. The build-up load on road surfaces in different suburbs showed significant differences due to the nature of anthropogenic activities, road texture depth and antecedent dry period. Analysis revealed that build-up pollutants consists primarily of soil derived minerals (60%) and the remainder is composed of traffic generated pollutants and organic matter. Major mineral components detected were quartz and potential clay forming minerals such as albite, microline, chlorite and muscovite. An average of 40-50% of build-up pollutants by weight was made up of quartz. Comparison of the mineral component of build-up pollutants with background soil samples indicated that the minerals primarily originate from surrounding soils. About 2.2% of build-up pollutants were organic matter which originates largely from plant matter. Traffic related pollutants which are potentially toxic to the receiving water environment represented about 30% of the build-up pollutants at the study sites.
Resumo:
This paper presents the historical and contextual background of road construction by state and local government in Queensland. It also highlights some key events that have shaped stakeholder participation in road infrastructure planning and delivery in Queensland. This synthesis was developed from a review of publications, organisational documents and interviews. To set the scene, the factors that shaped road delivery will be discussed.
Resumo:
The use of appropriate features to characterise an output class or object is critical for all classification problems. In order to find optimal feature descriptors for vegetation species classification in a power line corridor monitoring application, this article evaluates the capability of several spectral and texture features. A new idea of spectral–texture feature descriptor is proposed by incorporating spectral vegetation indices in statistical moment features. The proposed method is evaluated against several classic texture feature descriptors. Object-based classification method is used and a support vector machine is employed as the benchmark classifier. Individual tree crowns are first detected and segmented from aerial images and different feature vectors are extracted to represent each tree crown. The experimental results showed that the proposed spectral moment features outperform or can at least compare with the state-of-the-art texture descriptors in terms of classification accuracy. A comprehensive quantitative evaluation using receiver operating characteristic space analysis further demonstrates the strength of the proposed feature descriptors.
Resumo:
A basic understanding of the relationships between rainfall intensity, duration of rainfall and the amount of suspended particles in stormwater runoff generated from road surfaces has been gained mainly from past washoff experiments using rainfall simulators. Simulated rainfall was generally applied at constant intensities, whereas rainfall temporal patterns during actual storms are typically highly variable. This paper discusses a rationale for the application of the constant-intensity washoff concepts to actual storm event runoff. The rationale is tested using suspended particle load data collected at a road site located in Toowoomba, Australia. Agreement between the washoff concepts and measured data is most consistent for intermediate-duration storms (duration <5 h and >1 h). Particle loads resulting from these storm events increase linearly with average rainfall intensity. Above a threshold intensity, there is evidence to suggest a constant or plateau particle load is reached. The inclusion of a peak discharge factor (maximum 6 min rainfall intensity) enhances the ability to predict particle loads.
Resumo:
Robust, affine covariant, feature extractors provide a means to extract correspondences between images captured by widely separated cameras. Advances in wide baseline correspondence extraction require looking beyond the robust feature extraction and matching approach. This study examines new techniques of extracting correspondences that take advantage of information contained in affine feature matches. Methods of improving the accuracy of a set of putative matches, eliminating incorrect matches and extracting large numbers of additional correspondences are explored. It is assumed that knowledge of the camera geometry is not available and not immediately recoverable. The new techniques are evaluated by means of an epipolar geometry estimation task. It is shown that these methods enable the computation of camera geometry in many cases where existing feature extractors cannot produce sufficient numbers of accurate correspondences.
Resumo:
Most web service discovery systems use keyword-based search algorithms and, although partially successful, sometimes fail to satisfy some users information needs. This has given rise to several semantics-based approaches that look to go beyond simple attribute matching and try to capture the semantics of services. However, the results reported in the literature vary and in many cases are worse than the results obtained by keyword-based systems. We believe the accuracy of the mechanisms used to extract tokens from the non-natural language sections of WSDL files directly affects the performance of these techniques, because some of them can be more sensitive to noise. In this paper three existing tokenization algorithms are evaluated and a new algorithm that outperforms all the algorithms found in the literature is introduced.
An approach to statistical lip modelling for speaker identification via chromatic feature extraction
Resumo:
This paper presents a novel technique for the tracking of moving lips for the purpose of speaker identification. In our system, a model of the lip contour is formed directly from chromatic information in the lip region. Iterative refinement of contour point estimates is not required. Colour features are extracted from the lips via concatenated profiles taken around the lip contour. Reduction of order in lip features is obtained via principal component analysis (PCA) followed by linear discriminant analysis (LDA). Statistical speaker models are built from the lip features based on the Gaussian mixture model (GMM). Identification experiments performed on the M2VTS1 database, show encouraging results
Resumo:
Driving is a vigilance task, requiring sustained attention to maintain performance and avoid crashes. Hypovigilance (i.e., marked reduction in vigilance) while driving manifests as poor driving performance and is commonly attributed to fatigue (Dinges, 1995). However, poor driving performance has been found to be more frequent when driving in monotonous road environments, suggesting that monotony plays a role in generating hypovigilance (Thiffault & Bergeron, 2003b). Research to date has tended to conceptualise monotony as a uni-dimensional task characteristic, typically used over a prolonged period of time to facilitate other factors under investigation, most notably fatigue. However, more often than not, more than one exogenous factor relating to the task or operating environment is manipulated to vary or generate monotony (Mascord & Heath, 1992). Here we aimed to explore whether monotony is a multi-dimensional construct that is determined by characteristics of both the task proper and the task environment. The general assumption that monotony is a task characteristic used solely to elicit hypovigilance or poor performance related to fatigue appears to have led to there being little rigorous investigation into the exact nature of the relationship. While the two concepts are undoubtedly linked, the independent effect of monotony on hypovigilance remains largely ignored. Notwithstanding, there is evidence that monotony effects can emerge very early in vigilance tasks and are not necessarily accompanied by fatigue (see Meuter, Rakotonirainy, Johns, & Wagner, 2005). This phenomenon raises a largely untested, empirical question explored in two studies: Can hypovigilance emerge as a consequence of task and/or environmental monotony, independent of time on task and fatigue? In Study 1, using a short computerised vigilance task requiring responses to be withheld to infrequent targets, we explored the differential impacts of stimuli and task demand manipulations on the development of a monotonous context and the associated effects on vigilance performance (as indexed by respone errors and response times), independent of fatigue and time on task. The role of individual differences (sensation seeking, extroversion and cognitive failures) in moderating monotony effects was also considered. The results indicate that monotony affects sustained attention, with hypovigilance and associated performance worse in monotonous than in non-monotonous contexts. Critically, performance decrements emerged early in the task (within 4.3 minutes) and remained consistent over the course of the experiment (21.5 minutes), suggesting that monotony effects can operate independent of time on task and fatigue. A combination of low task demands and low stimulus variability form a monotonous context characterised by hypovigilance and poor task performance. Variations to task demand and stimulus variability were also found to independently affect performance, suggesting that monotony is a multi-dimensional construct relating to both task monotony (associated with the task itself) and environmental monotony (related to characteristics of the stimulus). Consequently, it can be concluded that monotony is multi-dimensional and is characterised by low variability in stimuli and/or task demands. The proposition that individual differences emerge under conditions of varying monotony with high sensation seekers and/or extroverts performing worse in monotonous contexts was only partially supported. Using a driving simulator, the findings of Study 1 were extended to a driving context to identify the behavioural and psychophysiological indices of monotony-related hypovigilance associated with variations to road design and road side scenery (Study 2). Supporting the proposition that monotony is a multi-dimensional construct, road design variability emerged as a key moderating characteristic of environmental monotony, resulting in poor driving performance indexed by decrements in steering wheel measures (mean lateral position). Sensation seeking also emerged as a moderating factor, where participants high in sensation seeking tendencies displayed worse driving behaviour in monotonous conditions. Importantly, impaired driving performance was observed within 8 minutes of commencing the driving task characterised by environmental monotony (low variability in road design) and was not accompanied by a decline in psychophysiological arousal. In addition, no subjective declines in alertness were reported. With fatigue effects associated with prolonged driving (van der Hulst, Meijman, & Rothengatter, 2001) and indexed by drowsiness, this pattern of results indicates that monotony can affect driver vigilance, independent of time on task and fatigue. Perceptual load theory (Lavie, 1995, 2005) and mindlessness theory (Robertson, Manly, Andrade, Baddley, & Yiend, 1997) provide useful theoretical frameworks for explaining and predicting monotony effects by positing that the low load (of task and/or stimuli) associated with a monotonous task results in spare attentional capacity which spills over involuntarily, resulting in the processing of task-irrelevant stimuli or task unrelated thoughts. That is, individuals – even when not fatigued - become easily distracted when performing a highly monotonous task, resulting in hypovigilance and impaired performance. The implications for road safety, including the likely effectiveness of fatigue countermeasures to mitigate monotony-related driver hypovigilance are discussed.