240 resultados para Perceptual closure
Resumo:
Evidence currently supports the view that intentional interpersonal coordination (IIC) is a self-organizing phenomenon facilitated by visual perception of co-actors in a coordinative coupling (Schmidt, Richardson, Arsenault, & Galantucci, 2007). The present study examines how apparent IIC is achieved in situations where visual information is limited for co-actors in a rowing boat. In paired rowing boats only one of the actors, [bow seat] gets to see the actions of the other [stroke seat]. Thus IIC appears to be facilitated despite the lack of important visual information for the control of the dyad. Adopting a mimetic approach to expert coordination, the present study qualitatively examined the experiences of expert performers (N=9) and coaches (N=4) with respect to how IIC was achieved in paired rowing boats. Themes were explored using inductive content analysis, which led to layered model of control. Rowers and coaches reported the use of multiple perceptual sources in order to achieve IIC. As expected(Kelso, 1995; Schmidt & O’Brien, 1997; Turvey, 1990), rowers in the bow of a pair boat make use of visual information provided by the partner in front of them [stroke]. However, this perceptual information is subordinate to perception Motor Learning and Control S111 of the relationship between the boat hull and water passing beside it. Stroke seat, in the absence of visual information about his/her partner, achieves coordination by picking up information about the lifting or looming of the boat’s stern along with water passage past the hull. In this case it appears that apparent or desired IIC is supported by the perception of extra-personal variables, in this case boat behavior; as this perceptual information source is used by both actors. To conclude, co-actors in two person rowing boats use multiple sources of perceptual information for apparent IIC that changes according to task constraints. Where visual information is restricted IIC is facilitated via extra-personal perceptual information and apparent IIC switches to intentional extra-personal coordination.
Resumo:
In this chapter, we are going to consider how language and practice interact in the process of supporting the learning of students with diverse abilities. You will learn that it is necessary for teachers to understand that while labels carry an administrative function in schools, when used carelessly they operate to stigmatise and exclude those whom we are working to include. This chapter will introduce the concept of equity and explain how the dilemma of difference emerges when we try to determine who should receive support and how. The chapter will also explain how an appreciation of language can help to inform and transform our pedagogy. An example of inclusion in action is provided to illustrate how inclusive language in practice can promote deep cultural changes that benefit both students and teachers. The process of determining appropriate and effective education of students with additional support requirements is troubled by what some refer to as the ‘dilemma of difference’. This dilemma derives mainly from the nature of language and our need to use certain words, terms and categories in order to share common understandings. Without these, educators cannot hope to arrive on the same page, yet such words can take on a life of their own; influencing thoughts, perspectives and attitudes in ways that far outstrip original intentions. The drive for clarity, however, through definition and diagnostic classification can ultimately obscure because of the cultural meanings that become invested within these terms through their use over time and in different professional contexts. In effect, trying to define “difference” in order to provide the right support to particular students is a process that entrenches normative boundaries that in turn create, accentuate and stigmatise whatever we have decided constitutes difference. Language is thus a powerful and dangerous weapon but, like other weapons, language can both hurt and defend. Understanding the power of language enables educators to use it both wisely and safely to the maximum benefit of their students. This chapter will discuss how teachers can recognise and support their students in ways that avoid stigma and the closure of stereotyping.
Resumo:
Process modeling grammars are used to create scripts of a business domain that a process-aware information system is intended to support. A key grammatical construct of such grammars is known as a Gateway. A Gateway construct is used to describe scenarios in which the workflow of a process diverges or converges according to relevant conditions. Gateway constructs have been subjected to much academic discussion about their meaning, role and usefulness, and have been linked to both process-modeling errors and process-model understandability. This paper examines perceptual discriminability effects of Gateway constructs on an individual's abilities to interpret process models. We compare two ways of expressing two convergence and divergence patterns – Parallel Split and Simple Merge – implemented in a process modeling grammar. On the basis of an experiment with 98 students, we provide empirical evidence that Gateway constructs aid the interpretation of process models due to a perceptual discriminability effect, especially when models are complex. We discuss the emerging implications for research and practice, in terms of revisions to grammar specifications, guideline development and design choices in process modeling.
Resumo:
This is a summative evaluation of the Stronger Smarter Learning Communities (SSLC) project that examines whether and how the SSLC project had an impact on Australian state schools which adopted its models and approaches. Drawing from qualitative and quantitative data sets, it also presents the largest scale and most comprehensive analysis of Indigenous education practices and outcomes to date. It includes empirical findings on: success in changing school ethos and community engagement; challenges in progress at closure of the 'gap' in conventionally measured achievement and performance; schools' and principals' choices in curriculum and instruction; profiles of teachers' and principals' training and views on teacher education; and a strong emphasis on community and school Indigenoous voices and views on Indigenous education.
Resumo:
Visual abnormalities, both at the sensory input and the higher interpretive levels, have been associated with many of the symptoms of schizophrenia. Individuals with schizophrenia typically experience distortions of sensory perception, resulting in perceptual hallucinations and delusions that are related to the observed visual deficits. Disorganised speech, thinking and behaviour are commonly experienced by sufferers of the disorder, and have also been attributed to perceptual disturbances associated with anomalies in visual processing. Compounding these issues are marked deficits in cognitive functioning that are observed in approximately 80% of those with schizophrenia. Cognitive impairments associated with schizophrenia include: difficulty with concentration and memory (i.e. working, visual and verbal), an impaired ability to process complex information, response inhibition and deficits in speed of processing, visual and verbal learning. Deficits in sustained attention or vigilance, poor executive functioning such as poor reasoning, problem solving, and social cognition, are all influenced by impaired visual processing. These symptoms impact on the internal perceptual world of those with schizophrenia, and hamper their ability to navigate their external environment. Visual processing abnormalities in schizophrenia are likely to worsen personal, social and occupational functioning. Binocular rivalry provides a unique opportunity to investigate the processes involved in visual awareness and visual perception. Binocular rivalry is the alternation of perceptual images that occurs when conflicting visual stimuli are presented to each eye in the same retinal location. The observer perceives the opposing images in an alternating fashion, despite the sensory input to each eye remaining constant. Binocular rivalry tasks have been developed to investigate specific parts of the visual system. The research presented in this Thesis provides an explorative investigation into binocular rivalry in schizophrenia, using the method of Pettigrew and Miller (1998) and comparing individuals with schizophrenia to healthy controls. This method allows manipulations to the spatial and temporal frequency, luminance contrast and chromaticity of the visual stimuli. Manipulations to the rival stimuli affect the rate of binocular rivalry alternations and the time spent perceiving each image (dominance duration). Binocular rivalry rate and dominance durations provide useful measures to investigate aspects of visual neural processing that lead to the perceptual disturbances and cognitive dysfunction attributed to schizophrenia. However, despite this promise the binocular rivalry phenomenon has not been extensively explored in schizophrenia to date. Following a review of the literature, the research in this Thesis examined individual variation in binocular rivalry. The initial study (Chapter 2) explored the effect of systematically altering the properties of the stimuli (i.e. spatial and temporal frequency, luminance contrast and chromaticity) on binocular rivalry rate and dominance durations in healthy individuals (n=20). The findings showed that altering the stimuli with respect to temporal frequency and luminance contrast significantly affected rate. This is significant as processing of temporal frequency and luminance contrast have consistently been demonstrated to be abnormal in schizophrenia. The current research then explored binocular rivalry in schizophrenia. The primary research question was, "Are binocular rivalry rates and dominance durations recorded in participants with schizophrenia different to those of the controls?" In this second study binocular rivalry data that were collected using low- and highstrength binocular rivalry were compared to alternations recorded during a monocular rivalry task, the Necker Cube task to replicate and advance the work of Miller et al., (2003). Participants with schizophrenia (n=20) recorded fewer alternations (i.e. slower alternation rates) than control participants (n=20) on both binocular rivalry tasks, however no difference was observed between the groups on the Necker cube task. Magnocellular and parvocellular visual pathways, thought to be abnormal in schizophrenia, were also investigated in binocular rivalry. The binocular rivalry stimuli used in this third study (Chapter 4) were altered to bias the task for one of these two pathways. Participants with schizophrenia recorded slower binocular rivalry rates than controls in both binocular rivalry tasks. Using a ‘within subject design’, binocular rivalry data were compared to data collected from a backwardmasking task widely accepted to bias both these pathways. Based on these data, a model of binocular rivalry, based on the magnocellular and parvocellular pathways that contribute to the dorsal and ventral visual streams, was developed. Binocular rivalry rates were compared with performance on the Benton’s Judgment of Line Orientation task, in individuals with schizophrenia compared to healthy controls (Chapter 5). The Benton’s Judgment of Line Orientation task is widely accepted to be processed within the right cerebral hemisphere, making it an appropriate task to investigate the role of the cerebral hemispheres in binocular rivalry, and to investigate the inter-hemispheric switching hypothesis of binocular rivalry proposed by Pettigrew and Miller (1998, 2003). The data were suggestive of intra-hemispheric rather than an inter-hemispheric visual processing in binocular rivalry. Neurotransmitter involvement in binocular rivalry, backward masking and Judgment of Line Orientation in schizophrenia were investigated using a genetic indicator of dopamine receptor distribution and functioning; the presence of the Taq1 allele of the dopamine D2 receptor (DRD2) receptor gene. This final study (Chapter 6) explored whether the presence of the Taq1 allele of the DRD2 receptor gene, and thus, by inference the distribution of dopamine receptors and dopamine function, accounted for the large individual variation in binocular rivalry. The presence of the Taq1 allele was associated with slower binocular rivalry rates or poorer performance in the backward masking and Judgment of Line Orientation tasks seen in the group with schizophrenia. This Thesis has contributed to what is known about binocular rivalry in schizophrenia. Consistently slower binocular rivalry rates were observed in participants with schizophrenia, indicating abnormally-slow visual processing in this group. These data support previous studies reporting visual processing abnormalities in schizophrenia and suggest that a slow binocular rivalry rate is not a feature specific to bipolar disorder, but may be a feature of disorders with psychotic features generally. The contributions of the magnocellular or dorsal pathways and parvocellular or ventral pathways to binocular rivalry, and therefore to perceptual awareness, were investigated. The data presented supported the view that the magnocellular system initiates perceptual awareness of an image and the parvocellular system maintains the perception of the image, making it available to higher level processing occurring within the cortical hemispheres. Abnormal magnocellular and parvocellular processing may both contribute to perceptual disturbances that ultimately contribute to the cognitive dysfunction associated with schizophrenia. An alternative model of binocular rivalry based on these observations was proposed.
Resumo:
This exhibition showcases the work of Postgraduate Landscape Architecture and final year Undergraduate Civil and Environmental Engineering students in response to issues of sustainability in the Port of Bundaberg. The Port of Bundaberg project site, just north of Bargara, is a complex mix of port facilities, urban development, coastal conservation and agriculture. The project brief was to prepare a range of strategic planning and environmental management options for future urban and infrastructure development in the Port area. Postgraduate Landscape Architecture and final year Undergraduate Civil and Environmental Engineering students worked over one teaching semester with guidance from QUT academics and partner organisations to produce strategic planning, environmental management planning and design options for managing future growth in the area. Specifically, these make recommendations regarding: • Interface between Port lands and residential settlement; • Future residential/urban development; • Transport accessibility and mobility – road, rail, tramway and maritime for personal and freight movement; • Local and regional connectivity - both physical and perceptual- between urban settlements of Port of Bundaberg – Burnett Heads and the surrounding area; • Recreational and tourism development; • Public/private space mix and access; • Ecological conservation assets; • Natural and cultural heritage assets The project process involved three visits to the site by QUT students and staff. The first visit at the project’s commencement included a formal briefing session with project partners the Burnett Mary Regional Group, Port of Brisbane Corporation, and Queensland Department of Local Government and Planning. Formal and informal community engagement facilitated by the Burnett Heads Progress Association also allowed students to gain some understanding of local values. A second visit mid-project involved a ‘Futures Workshop’ with students and community. This enabled the students to gain the benefit of local knowledge and experience in response to their work-in-progress, and to establish priorities for project completion. It strengthened the relationship between the community and the students. A final exhibition, ‘Port of Bundaberg Futures' was held at the Port TAFE Campus upon the completion of the project. The student work exhibited offers a diverse number of alternative options for the future urban development, infrastructure and environmental planning that the partner organisations have used for ongoing consultation.
Resumo:
The overarching aim of this thesis was to investigate how processes of perception and action emerge under changing informational constraints during performance of multi-articular interceptive actions. Interceptive actions provide unique opportunities to study processes of perception and action in dynamic performance environments. The movement model used to exemplify the functionally coupled relationship between perception and action, from an ecological dynamics perspective, was cricket batting. Ecological dynamics conceptualises the human body as a complex system composed of many interacting sub-systems, and perceptual and motor system degrees of freedom, which leads to the emergence of patterns of behaviour under changing task constraints during performance. The series of studies reported in the Chapters of this doctoral thesis contributed to understanding of human behaviour by providing evidence of key properties of complex systems in human movement systems including self-organisation under constraints and meta-stability. Specifically, the studies: i) demonstrated how movement organisation (action) and visual strategies (perception) of dynamic human behaviour are constrained by changing ecological (especially informational) task constraints; (ii) provided evidence for the importance of representative design in experiments on perception and action; and iii), provided a principled theoretical framework to guide learning design in acquisition of skill in interceptive actions like cricket batting.
Resumo:
Vision-based SLAM is mostly a solved problem providing clear, sharp images can be obtained. However, in outdoor environments a number of factors such as rough terrain, high speeds and hardware limitations can result in these conditions not being met. High speed transit on rough terrain can lead to image blur and under/over exposure, problems that cannot easily be dealt with using low cost hardware. Furthermore, recently there has been a growth in interest in lifelong autonomy for robots, which brings with it the challenge in outdoor environments of dealing with a moving sun and lack of constant artificial lighting. In this paper, we present a lightweight approach to visual localization and visual odometry that addresses the challenges posed by perceptual change and low cost cameras. The approach combines low resolution imagery with the SLAM algorithm, RatSLAM. We test the system using a cheap consumer camera mounted on a small vehicle in a mixed urban and vegetated environment, at times ranging from dawn to dusk and in conditions ranging from sunny weather to rain. We first show that the system is able to provide reliable mapping and recall over the course of the day and incrementally incorporate new visual scenes from different times into an existing map. We then restrict the system to only learning visual scenes at one time of day, and show that the system is still able to localize and map at other times of day. The results demonstrate the viability of the approach in situations where image quality is poor and environmental or hardware factors preclude the use of visual features.
Resumo:
In this paper we demonstrate passive vision-based localization in environments more than two orders of magnitude darker than the current benchmark using a 100 webcam and a 500 camera. Our approach uses the camera’s maximum exposure duration and sensor gain to achieve appropriately exposed images even in unlit night-time environments, albeit with extreme levels of motion blur. Using the SeqSLAM algorithm, we first evaluate the effect of variable motion blur caused by simulated exposures of 132 ms to 10000 ms duration on localization performance. We then use actual long exposure camera datasets to demonstrate day-night localization in two different environments. Finally we perform a statistical analysis that compares the baseline performance of matching unprocessed greyscale images to using patch normalization and local neighbourhood normalization – the two key SeqSLAM components. Our results and analysis show for the first time why the SeqSLAM algorithm is effective, and demonstrate the potential for cheap camera-based localization systems that function across extreme perceptual change.
Resumo:
Biological systems involving proliferation, migration and death are observed across all scales. For example, they govern cellular processes such as wound-healing, as well as the population dynamics of groups of organisms. In this paper, we provide a simplified method for correcting mean-field approximations of volume-excluding birth-death-movement processes on a regular lattice. An initially uniform distribution of agents on the lattice may give rise to spatial heterogeneity, depending on the relative rates of proliferation, migration and death. Many frameworks chosen to model these systems neglect spatial correlations, which can lead to inaccurate predictions of their behaviour. For example, the logistic model is frequently chosen, which is the mean-field approximation in this case. This mean-field description can be corrected by including a system of ordinary differential equations for pair-wise correlations between lattice site occupancies at various lattice distances. In this work we discuss difficulties with this method and provide a simplication, in the form of a partial differential equation description for the evolution of pair-wise spatial correlations over time. We test our simplified model against the more complex corrected mean-field model, finding excellent agreement. We show how our model successfully predicts system behaviour in regions where the mean-field approximation shows large discrepancies. Additionally, we investigate regions of parameter space where migration is reduced relative to proliferation, which has not been examined in detail before, and our method is successful at correcting the deviations observed in the mean-field model in these parameter regimes.
Resumo:
This paper presents a mapping and navigation system for a mobile robot, which uses vision as its sole sensor modality. The system enables the robot to navigate autonomously, plan paths and avoid obstacles using a vision based topometric map of its environment. The map consists of a globally-consistent pose-graph with a local 3D point cloud attached to each of its nodes. These point clouds are used for direction independent loop closure and to dynamically generate 2D metric maps for locally optimal path planning. Using this locally semi-continuous metric space, the robot performs shortest path planning instead of following the nodes of the graph --- as is done with most other vision-only navigation approaches. The system exploits the local accuracy of visual odometry in creating local metric maps, and uses pose graph SLAM, visual appearance-based place recognition and point clouds registration to create the topometric map. The ability of the framework to sustain vision-only navigation is validated experimentally, and the system is provided as open-source software.
Resumo:
We propose a computationally efficient image border pixel based watermark embedding scheme for medical images. We considered the border pixels of a medical image as RONI (region of non-interest), since those pixels have no or little interest to doctors and medical professionals irrespective of the image modalities. Although RONI is used for embedding, our proposed scheme still keeps distortion at a minimum level in the embedding region using the optimum number of least significant bit-planes for the border pixels. All these not only ensure that a watermarked image is safe for diagnosis, but also help minimize the legal and ethical concerns of altering all pixels of medical images in any manner (e.g, reversible or irreversible). The proposed scheme avoids the need for RONI segmentation, which incurs capacity and computational overheads. The performance of the proposed scheme has been compared with a relevant scheme in terms of embedding capacity, image perceptual quality (measured by SSIM and PSNR), and computational efficiency. Our experimental results show that the proposed scheme is computationally efficient, offers an image-content-independent embedding capacity, and maintains a good image quality
Resumo:
This paper examines the outcomes of nascent and young entrepreneurial firms in Australia. Findings of interest in this paper include: • After three years similar proportions of nascent firms reach an operational state (31 per cent), i.e. sales regularly exceed costs, compared with those that have terminated (35 per cent), and those who are still trying to achieve venture creation (34 per cent). This outcome closely mirrors the outcomes in the US PSED study. • The young firm sample shows that these new ventures remain more robust to firm closure. The vast majority of young firms (78 per cent) continue to be active in the market the last time they participated in CAUSEE. • The annual termination rate for young firms is 9 per cent at most, and 14 per cent cumulatively, while cumulatively only 8 per cent of young firms experience a drop-off in activity to be considered as having uncertain status. • The average number of employees in Nascent Firms is one person, the average number of Young Firm employees increases from two at first sampling to three after three years. • While the founders of exiting Nascent Firms are more likely to return to their old job upon termination of their business, Young Firm founders move on to new jobs. Regardless the majority of exiting firm founders rate their experience as positive and are prepared to attempt business creation in the future.
Resumo:
Purpose: Matrix metalloproteinases (MMPs) degrade extracellular proteins and facilitate tumor growth, invasion, metastasis, and angiogenesis. This trial was undertaken to determine the effect of prinomastat, an inhibitor of selected MMPs, on the survival of patients with advanced non-small-cell lung cancer (NSCLC), when given in combination with gemcitabine-cisplatin chemotherapy. Patients and Methods: Chemotherapy-naive patients were randomly assigned to receive prinomastat 15 mg or placebo twice daily orally continuously, in combination with gemcitabine 1,250 mg/m2 days 1 and 8 plus cisplatin 75 mg/m2 day 1, every 21 days for up to six cycles. The planned sample size was 420 patients. Results: Study results at an interim analysis and lack of efficacy in another phase III trial prompted early closure of this study. There were 362 patients randomized (181 on prinomastat and 181 on placebo). One hundred thirty-four patients had stage IIIB disease with T4 primary tumor, 193 had stage IV disease, and 34 had recurrent disease (one enrolled patient was ineligible with stage IIIA disease). Overall response rates for the two treatment arms were similar (27% for prinomastat v 26% for placebo; P = .81). There was no difference in overall survival or time to progression; for prinomastat versus placebo patients, the median overall survival times were 11.5 versus 10.8 months (P = .82), 1-year survival rates were 43% v 38% (P = .45), and progression-free survival times were 6.1 v 5.5 months (P = .11), respectively. The toxicities of prinomastat were arthralgia, stiffness, and joint swelling. Treatment interruption was required in 38% of prinomastat patients and 12% of placebo patients. Conclusion: Prinomastat does not improve the outcome of chemotherapy in advanced NSCLC. © 2005 by American Society of Clinical Oncology.
Resumo:
Prolonged intermittent-sprint exercise (i.e., team sports) induce disturbances in skeletal muscle structure and function that are associated with reduced contractile function, a cascade of inflammatory responses, perceptual soreness, and a delayed return to optimal physical performance. In this context, recovery from exercise-induced fatigue is traditionally treated from a peripheral viewpoint, with the regeneration of muscle physiology and other peripheral factors the target of recovery strategies. The direction of this research narrative on post-exercise recovery differs to the increasing emphasis on the complex interaction between both central and peripheral factors regulating exercise intensity during exercise performance. Given the role of the central nervous system (CNS) in motor-unit recruitment during exercise, it too may have an integral role in post-exercise recovery. Indeed, this hypothesis is indirectly supported by an apparent disconnect in time-course changes in physiological and biochemical markers resultant from exercise and the ensuing recovery of exercise performance. Equally, improvements in perceptual recovery, even withstanding the physiological state of recovery, may interact with both feed-forward/feed-back mechanisms to influence subsequent efforts. Considering the research interest afforded to recovery methodologies designed to hasten the return of homeostasis within the muscle, the limited focus on contributors to post-exercise recovery from CNS origins is somewhat surprising. Based on this context, the current review aims to outline the potential contributions of the brain to performance recovery after strenuous exercise.