393 resultados para PSI core complex
Resumo:
In this paper, we develop a conceptual model to explore the perceived complementary congruence between complex project leaders and the demands of the complex project environment to understand how leaders’ affective and behavioural performance at work might be impacted by this fit. We propose that complex project leaders high in emotional intelligence and cognitive flexibility should report a higher level of fit between themselves and the complex project environment. This abilities-demands measure of fit should then relate to affective and behavioural performance outcomes, such that leaders who perceive a higher level of fit should establish and maintain more effective, higher quality project stakeholder relationships than leaders who perceive a lower level of fit.
Resumo:
Concrete is commonly used as a primary construction material for tall building construction. Load bearing components such as columns and walls in concrete buildings are subjected to instantaneous and long term axial shortening caused by the time dependent effects of "shrinkage", "creep" and "elastic" deformations. Reinforcing steel content, variable concrete modulus, volume to surface area ratio of the elements and environmental conditions govern axial shortening. The impact of differential axial shortening among columns and core shear walls escalate with increasing building height. Differential axial shortening of gravity loaded elements in geometrically complex and irregular buildings result in permanent distortion and deflection of the structural frame which have a significant impact on building envelopes, building services, secondary systems and the life time serviceability and performance of a building. Existing numerical methods commonly used in design to quantify axial shortening are mainly based on elastic analytical techniques and therefore unable to capture the complexity of non-linear time dependent effect. Ambient measurements of axial shortening using vibrating wire, external mechanical strain, and electronic strain gauges are methods that are available to verify pre-estimated values from the design stage. Installing these gauges permanently embedded in or on the surface of concrete components for continuous measurements during and after construction with adequate protection is uneconomical, inconvenient and unreliable. Therefore such methods are rarely if ever used in actual practice of building construction. This research project has developed a rigorous numerical procedure that encompasses linear and non-linear time dependent phenomena for prediction of axial shortening of reinforced concrete structural components at design stage. This procedure takes into consideration (i) construction sequence, (ii) time varying values of Young's Modulus of reinforced concrete and (iii) creep and shrinkage models that account for variability resulting from environmental effects. The capabilities of the procedure are illustrated through examples. In order to update previous predictions of axial shortening during the construction and service stages of the building, this research has also developed a vibration based procedure using ambient measurements. This procedure takes into consideration the changes in vibration characteristic of structure during and after construction. The application of this procedure is illustrated through numerical examples which also highlight the features. The vibration based procedure can also be used as a tool to assess structural health/performance of key structural components in the building during construction and service life.
Resumo:
Complex networks have been studied extensively due to their relevance to many real-world systems such as the world-wide web, the internet, biological and social systems. During the past two decades, studies of such networks in different fields have produced many significant results concerning their structures, topological properties, and dynamics. Three well-known properties of complex networks are scale-free degree distribution, small-world effect and self-similarity. The search for additional meaningful properties and the relationships among these properties is an active area of current research. This thesis investigates a newer aspect of complex networks, namely their multifractality, which is an extension of the concept of selfsimilarity. The first part of the thesis aims to confirm that the study of properties of complex networks can be expanded to a wider field including more complex weighted networks. Those real networks that have been shown to possess the self-similarity property in the existing literature are all unweighted networks. We use the proteinprotein interaction (PPI) networks as a key example to show that their weighted networks inherit the self-similarity from the original unweighted networks. Firstly, we confirm that the random sequential box-covering algorithm is an effective tool to compute the fractal dimension of complex networks. This is demonstrated on the Homo sapiens and E. coli PPI networks as well as their skeletons. Our results verify that the fractal dimension of the skeleton is smaller than that of the original network due to the shortest distance between nodes is larger in the skeleton, hence for a fixed box-size more boxes will be needed to cover the skeleton. Then we adopt the iterative scoring method to generate weighted PPI networks of five species, namely Homo sapiens, E. coli, yeast, C. elegans and Arabidopsis Thaliana. By using the random sequential box-covering algorithm, we calculate the fractal dimensions for both the original unweighted PPI networks and the generated weighted networks. The results show that self-similarity is still present in generated weighted PPI networks. This implication will be useful for our treatment of the networks in the third part of the thesis. The second part of the thesis aims to explore the multifractal behavior of different complex networks. Fractals such as the Cantor set, the Koch curve and the Sierspinski gasket are homogeneous since these fractals consist of a geometrical figure which repeats on an ever-reduced scale. Fractal analysis is a useful method for their study. However, real-world fractals are not homogeneous; there is rarely an identical motif repeated on all scales. Their singularity may vary on different subsets; implying that these objects are multifractal. Multifractal analysis is a useful way to systematically characterize the spatial heterogeneity of both theoretical and experimental fractal patterns. However, the tools for multifractal analysis of objects in Euclidean space are not suitable for complex networks. In this thesis, we propose a new box covering algorithm for multifractal analysis of complex networks. This algorithm is demonstrated in the computation of the generalized fractal dimensions of some theoretical networks, namely scale-free networks, small-world networks, random networks, and a kind of real networks, namely PPI networks of different species. Our main finding is the existence of multifractality in scale-free networks and PPI networks, while the multifractal behaviour is not confirmed for small-world networks and random networks. As another application, we generate gene interactions networks for patients and healthy people using the correlation coefficients between microarrays of different genes. Our results confirm the existence of multifractality in gene interactions networks. This multifractal analysis then provides a potentially useful tool for gene clustering and identification. The third part of the thesis aims to investigate the topological properties of networks constructed from time series. Characterizing complicated dynamics from time series is a fundamental problem of continuing interest in a wide variety of fields. Recent works indicate that complex network theory can be a powerful tool to analyse time series. Many existing methods for transforming time series into complex networks share a common feature: they define the connectivity of a complex network by the mutual proximity of different parts (e.g., individual states, state vectors, or cycles) of a single trajectory. In this thesis, we propose a new method to construct networks of time series: we define nodes by vectors of a certain length in the time series, and weight of edges between any two nodes by the Euclidean distance between the corresponding two vectors. We apply this method to build networks for fractional Brownian motions, whose long-range dependence is characterised by their Hurst exponent. We verify the validity of this method by showing that time series with stronger correlation, hence larger Hurst exponent, tend to have smaller fractal dimension, hence smoother sample paths. We then construct networks via the technique of horizontal visibility graph (HVG), which has been widely used recently. We confirm a known linear relationship between the Hurst exponent of fractional Brownian motion and the fractal dimension of the corresponding HVG network. In the first application, we apply our newly developed box-covering algorithm to calculate the generalized fractal dimensions of the HVG networks of fractional Brownian motions as well as those for binomial cascades and five bacterial genomes. The results confirm the monoscaling of fractional Brownian motion and the multifractality of the rest. As an additional application, we discuss the resilience of networks constructed from time series via two different approaches: visibility graph and horizontal visibility graph. Our finding is that the degree distribution of VG networks of fractional Brownian motions is scale-free (i.e., having a power law) meaning that one needs to destroy a large percentage of nodes before the network collapses into isolated parts; while for HVG networks of fractional Brownian motions, the degree distribution has exponential tails, implying that HVG networks would not survive the same kind of attack.
Resumo:
Mixture models are a flexible tool for unsupervised clustering that have found popularity in a vast array of research areas. In studies of medicine, the use of mixtures holds the potential to greatly enhance our understanding of patient responses through the identification of clinically meaningful clusters that, given the complexity of many data sources, may otherwise by intangible. Furthermore, when developed in the Bayesian framework, mixture models provide a natural means for capturing and propagating uncertainty in different aspects of a clustering solution, arguably resulting in richer analyses of the population under study. This thesis aims to investigate the use of Bayesian mixture models in analysing varied and detailed sources of patient information collected in the study of complex disease. The first aim of this thesis is to showcase the flexibility of mixture models in modelling markedly different types of data. In particular, we examine three common variants on the mixture model, namely, finite mixtures, Dirichlet Process mixtures and hidden Markov models. Beyond the development and application of these models to different sources of data, this thesis also focuses on modelling different aspects relating to uncertainty in clustering. Examples of clustering uncertainty considered are uncertainty in a patient’s true cluster membership and accounting for uncertainty in the true number of clusters present. Finally, this thesis aims to address and propose solutions to the task of comparing clustering solutions, whether this be comparing patients or observations assigned to different subgroups or comparing clustering solutions over multiple datasets. To address these aims, we consider a case study in Parkinson’s disease (PD), a complex and commonly diagnosed neurodegenerative disorder. In particular, two commonly collected sources of patient information are considered. The first source of data are on symptoms associated with PD, recorded using the Unified Parkinson’s Disease Rating Scale (UPDRS) and constitutes the first half of this thesis. The second half of this thesis is dedicated to the analysis of microelectrode recordings collected during Deep Brain Stimulation (DBS), a popular palliative treatment for advanced PD. Analysis of this second source of data centers on the problems of unsupervised detection and sorting of action potentials or "spikes" in recordings of multiple cell activity, providing valuable information on real time neural activity in the brain.
Resumo:
The paper explores the results an on-going research project to identify factors influencing the success of international and non-English speaking background (NESB) gradúate students in the fields of Engineering and IT at three Australian universities: the Queensland University of Technology (QUT), the University of Western Australia (UWA), and Curtin University (CU). While the larger study explores the influence of factors from both sides of the supervision equation (e.g., students and supervisors), this paper focusses primarily on the results of an online survey involving 227 international and/or NESB graduate students in the areas of Engineering and IT at the three universities. The study reveals cross-cultural differences in perceptions of student and supervisor roles, as well as differences in the understanding of the requirements of graduate study within the Australian Higher Education context. We argue that in order to assist international and NESB research students to overcome such culturally embedded challenges, it is important to develop a model which recognizes the complex interactions of factors from both sides of the supervision relationship, in order to understand this cohort‟s unique pedagogical needs and develop intercultural sensitivity within postgraduate research supervision.
Resumo:
This paper is concerned with investigating existing and potential scope of Dublin Core metadata in Knowledge Management contexts. Modelling knowledge is identified as a conceptual prerequisite in this investigation, principally for the purpose of clarifying scope prior to identifying the range of tasks associated with organising knowledge. A variety of models is presented and relationships between data, information, and knowledge discussed. It is argued that the two most common modes of organisation, hierarchies and networks, influence the effectiveness and flow of knowledge. Practical perspective is provided by reference to implementations and projects providing evidence of how DC metadata is applied in such contexts. A sense-making model is introduced that can be used as a shorthand reference for identifying useful facets of knowledge that might be described using metadata. Discussion is aimed at presenting this model in a way that both validates current applications and points to potential novel applications.
Resumo:
This chapter reports on a study of oracy in a first-year university Business course, with particular interest in the oracy demands for second language-using international students. The research is relevant at a time when Higher Education is characterised by the confluence of increased international enrolments, more dialogic teaching and learning, and imperatives for teamwork and collaboration. Data sources for the study included videotaped lectures and tutorials, course documents, student surveys, and an interview with the lecturer. The findings pointed to a complex, oracy-laden environment where interactive talk fulfilled high-stakes functions related to social inclusion, the co-construction of knowledge, and the accomplishment of assessment tasks. The salience of talk posed significant challenges for students negotiating these core functions in their second language. The study highlights the oracy demands in university courses and foregrounds the need for university teachers, curriculum writers and speaking test developers to recognise these demands and explicate them for the benefit of all students.
Resumo:
Core(polyvinyl neodecanoate-ethylene glycol dimethacrylate)-shell(polyvinyl alcohol) (core (P(VND-EGDMA))-shell(PVA)) microspheres were developed by seeded polymerization with the use of conventional free radical and RAFT/MADIX mediated polymerization. Poly(vinyl pivalate) PVPi was grafted onto microspheres prepared via suspension polymerization of vinylneodecanoate and ethylene glycol dimethacrylate. The amount of grafted polymer was found to be independent from the technique used with conventional free radical polymerization and MADIX polymerization resulting into similar shell thicknesses. Both systems—grafting via free radical polymerization or the MADIX process—were found to follow slightly different kinetics. While the free radical polymerization resulted in a weight gain linear with the monomer consumption in solution the growth in the MADIX controlled system experienced a delay. The core-shell microspheres were obtained by hydrolysis of the poly(vinyl pivalate) surface grafted brushes to form poly(vinyl alcohol). During hydrolysis the microspheres lost a significant amount of weight, consistent with the hydrolysis of 40–70% of all VPi units. Drug loading was found to be independent of the shell layer thickness, suggesting that the drug loading is governed by the amount of bulk material. The shell layer does not appear to represent an obstacle to the drug ingress. Cell testing using colorectal cancer cell lines HT 29 confirm the biocompatibility of the empty microspheres whereas the clofazimine loaded particles lead to 50% cell death, confirming the release of the drug.
Resumo:
This paper presents a three-dimensional numerical analysis of the electromagnetic forces within a high voltage superconducting Fault Current Limiter (FCL) with a saturated core under short-circuit conditions. The effects of electrodynamics forces in power transformer coils under short-circuit conditions have been reported widely. However, the coil arrangement in an FCL with saturated core differs significantly from existing reactive devices. The boundary element method is employed to perform an electromagnetic force analysis on an FCL. The analysis focuses on axial and radial forces of the AC coil. The results are compared to those of a power transformer and important design considerations are highlighted.
Resumo:
Eukaryotic cell cycle progression is mediated by phosphorylation of protein substrates by cyclin-dependent kinases (CDKs). A critical substrate of CDKs is the product of the retinoblastoma tumor suppressor gene, pRb, which inhibits G1-S phase cell cycle progression by binding and repressing E2F transcription factors. CDK-mediated phosphorylation of pRb alleviates this inhibitory effect to promote G1-S phase cell cycle progression. pRb represses transcription by binding to the E2F transactivation domain and recruiting the mSin3·histone deacetylase (HDAC) transcriptional repressor complex via the retinoblastoma-binding protein 1 (RBP1). RBP1 binds to the pocket region of pRb via an LXCXE motif and to the SAP30 subunit of the mSin3·HDAC complex and, thus, acts as a bridging protein in this multisubunit complex. In the present study we identified RBP1 as a novel CDK substrate. RBP1 is phosphorylated by CDK2 on serines 864 and 1007, which are N- and C-terminal to the LXCXE motif, respectively. CDK2-mediated phosphorylation of RBP1 or pRb destabilizes their interaction in vitro, with concurrent phosphorylation of both proteins leading to their dissociation. Consistent with these findings, RBP1 phosphorylation is increased during progression from G 1 into S-phase, with a concurrent decrease in its association with pRb in MCF-7 breast cancer cells. These studies provide new mechanistic insights into CDK-mediated regulation of the pRb tumor suppressor during cell cycle progression, demonstrating that CDK-mediated phosphorylation of both RBP1 and pRb induces their dissociation to mediate release of the mSin3·HDAC transcriptional repressor complex from pRb to alleviate transcriptional repression of E2F.
Resumo:
Kinematic models are commonly used to quantify foot and ankle kinematics, yet no marker sets or models have been proven reliable or accurate when wearing shoes. Further, the minimal detectable difference of a developed model is often not reported. We present a kinematic model that is reliable, accurate and sensitive to describe the kinematics of the foot–shoe complex and lower leg during walking gait. In order to achieve this, a new marker set was established, consisting of 25 markers applied on the shoe and skin surface, which informed a four segment kinematic model of the foot–shoe complex and lower leg. Three independent experiments were conducted to determine the reliability, accuracy and minimal detectable difference of the marker set and model. Inter-rater reliability of marker placement on the shoe was proven to be good to excellent (ICC = 0.75–0.98) indicating that markers could be applied reliably between raters. Intra-rater reliability was better for the experienced rater (ICC = 0.68–0.99) than the inexperienced rater (ICC = 0.38–0.97). The accuracy of marker placement along each axis was <6.7 mm for all markers studied. Minimal detectable difference (MDD90) thresholds were defined for each joint; tibiocalcaneal joint – MDD90 = 2.17–9.36°, tarsometatarsal joint – MDD90 = 1.03–9.29° and the metatarsophalangeal joint – MDD90 = 1.75–9.12°. These thresholds proposed are specific for the description of shod motion, and can be used in future research designed at comparing between different footwear.
Resumo:
Flow-oriented process modeling languages have a long tradition in the area of Business Process Management and are widely used for capturing activities with their behavioral and data dependencies. Individual events were introduced for triggering process instantiation and activities. However, real-world business cases drive the need for also covering complex event patterns as they are known in the field of Complex Event Processing. Therefore, this paper puts forward a catalog of requirements for handling complex events in process models, which can be used as reference framework for assessing process definition languages and systems. An assessment of BPEL and BPMN is provided.
Resumo:
This article investigates the complex phenomenon of major gift giving to charitable institutions. Drawing on empirical evidence from interviews with 16 Australian major donors (who gave a single gift of at least AU$10,000 in 2008 or 2009), we seek to better understand donor expectations and (dis)satisfaction. Given growing need for social services, and the competition among nonprofit organisations (NPOs) to secure sustainable funding, this research is particularly timely. Currently, little is known about major donors’ expectations, wants and needs. Equity theory, with the concept of reciprocity at its core, was found to provide a useful framework for understanding these phenomena. A model of equitable major gift relationships was developed from the data, which portrays balanced relationships and identifies potential areas of dissatisfaction for major donors. We conclude by offering suggestions for NPOs seeking to understand the complexities of major gift relationships, with practical implications for meeting donors’ needs.
Resumo:
To ensure infrastructure assets are procured and maintained by government on behalf of citizens, appropriate policy and institutional architecture is needed, particularly if a fundamental shift to more sustainable infrastructure is the goal. The shift in recent years from competitive and resource-intensive procurement to more collaborative and sustainable approaches to infrastructure governance is considered a major transition in infrastructure procurement systems. In order to better understand this transition in infrastructure procurement arrangements, the concept of emergence from Complex Adaptive Systems (CAS) theory is offered as a key construct. Emergence holds that micro interactions can result in emergent macro order. Applying the concept of emergence to infrastructure procurement, this research examines how interaction of agents in individual projects can result in different industry structural characteristics. The paper concludes that CAS theory, and particularly the concept of ‘emergence’, provides a useful construct to understand infrastructure procurement dynamics and progress towards sustainability.
Resumo:
This thesis consists of a 46,000 word polyphonic novella, Unravel, and an exegesis, Picking at Scabs: the Underside of Grief. The works are companion pieces, sitting side-by-side, and together they plumb the complex depths of loss and its resultant disorder, painful longing, and sorrow. The novella, representing 75% of the work and creative practice, is a multilayered work, which scrapes at the potent unspeakability of the presence of absence in the lives of its chief protagonists, Hana and Guy. As the novella progresses, loss is unraveled to reveal the interplay of remembering and forgetting, past and present and the ways in which these knotty fibres are connected with the strands of memory, trauma, silence, and the uncanny. Each of these threads is woven into the novella and as they plait together, loosen and fray, they expose the mystery, lies and secrets at the core of the novella. The exegesis, which comprises 25% of the thesis, picks at loss to uncover and loosen a complex and worn tangle of knots and loops. In this way, the exegesis and creative work are constantly in dialogue and while neither provides all the answers, both stretch the yarn to reveal an enthusiasm of practice.