142 resultados para Optimal Linear Control
Resumo:
This study examines and quantifies the effect of adding polyelectrolytes to cellulose nanofibre suspensions on the gel point of cellulose nanofibre suspensions, which is the lowest solids concentration at which the suspension forms a continuous network. The lower the gel point, the faster the drainage time to produce a sheet and the higher the porosity of the final sheet formed. Two new techniques were designed to measure the dynamic compressibility and the drainability of nanocellulose–polyelectrolyte suspensions. We developed a master curve which showed that the independent variable controlling the behaviour of nanocellulose suspensions and its composite is the structure of the flocculated suspension which is best quantified as the gel point. This was independent of the type of polyelectrolyte used. At an addition level of 2 mg/g of nanofibre, a reduction in gel point over 50 % was achieved using either a high molecular weight (13 MDa) linear cationic polyacrylamide (CPAM, 40 % charge), a dendrimer polyethylenimine of high molecular weight of 750,000 Da (HPEI) or even a low molecular weight of 2000 Da (LPEI). There was no significant difference in the minimum gel point achieved, despite the difference in polyelectrolyte morphology and molecular weight. In this paper, we show that the gel point controls the flow through the fibre suspension, even when comparing fibre suspensions with solids content above the gel point. A lower gel point makes it easier for water to drain through the fibre network,reducing the pressure required to achieve a given dewatering rate and reducing the filtering time required to form a wet laid sheet. We further show that the lower gel point partially controls the structure of the wet laid sheet after it is dried. Halving the gel point increased the air permeability of the dry sheet by 37, 46 and 25 %, when using CPAM, HPEI and LPEI, respectively. The resistance to liquid flow was reduced by 74 and 90 %, when using CPAM and LPEI. Analysing the paper formed shows that sheet forming process and final sheet properties can be engineered and controlled by adding polyelectrolytes to the nanofibre suspension.
Resumo:
Ship seakeeping operability refers to the quantification of motion performance in waves relative to mission requirements. This is used to make decisions about preferred vessel designs, but it can also be used as comprehensive assessment of the benefits of ship-motion-control systems. Traditionally, operability computation aggregates statistics of motion computed over over the envelope of likely environmental conditions in order to determine a coefficient in the range from 0 to 1 called operability. When used for assessment of motion-control systems, the increase of operability is taken as the key performance indicator. The operability coefficient is often given the interpretation of the percentage of time operable. This paper considers an alternative probabilistic approach to this traditional computation of operability. It characterises operability not as a number to which a frequency interpretation is attached, but as a hypothesis that a vessel will attain the desired performance in one mission considering the envelope of likely operational conditions. This enables the use of Bayesian theory to compute the probability of that this hypothesis is true conditional on data from simulations. Thus, the metric considered is the probability of operability. This formulation not only adheres to recent developments in reliability and risk analysis, but also allows incorporating into the analysis more accurate descriptions of ship-motion-control systems since the analysis is not limited to linear ship responses in the frequency domain. The paper also discusses an extension of the approach to the case of assessment of increased levels of autonomy for unmanned marine craft.
Resumo:
Several articles in this journal have studied optimal designs for testing a series of treatments to identify promising ones for further study. These designs formulate testing as an ongoing process until a promising treatment is identified. This formulation is considered to be more realistic but substantially increases the computational complexity. In this article, we show that these new designs, which control the error rates for a series of treatments, can be reformulated as conventional designs that control the error rates for each individual treatment. This reformulation leads to a more meaningful interpretation of the error rates and hence easier specification of the error rates in practice. The reformulation also allows us to use conventional designs from published tables or standard computer programs to design trials for a series of treatments. We illustrate these using a study in soft tissue sarcoma.
Resumo:
A spatial sampling design that uses pair-copulas is presented that aims to reduce prediction uncertainty by selecting additional sampling locations based on both the spatial configuration of existing locations and the values of the observations at those locations. The novelty of the approach arises in the use of pair-copulas to estimate uncertainty at unsampled locations. Spatial pair-copulas are able to more accurately capture spatial dependence compared to other types of spatial copula models. Additionally, unlike traditional kriging variance, uncertainty estimates from the pair-copula account for influence from measurement values and not just the configuration of observations. This feature is beneficial, for example, for more accurate identification of soil contamination zones where high contamination measurements are located near measurements of varying contamination. The proposed design methodology is applied to a soil contamination example from the Swiss Jura region. A partial redesign of the original sampling configuration demonstrates the potential of the proposed methodology.
Resumo:
The concession agreement is the core feature of BOT projects, with the concession period being the most essential feature in determining the time span of the various rights, obligations and responsibilities of the government and concessionaire. Concession period design is therefore crucial for financial viability and determining the benefit/cost allocation between the host government and the concessionaire. However, while the concession period and project life span are essentially interdependent, most methods to date consider their determination as contiguous events that are determined exogenously. Moreover, these methods seldom consider the, often uncertain, social benefits and costs involved that are critical in defining, pricing and distributing benefits and costs between the various parties and evaluating potentially distributable cash flows. In this paper, we present the results of the first stage of a research project aimed at determining the optimal build-operate-transfer (BOT) project life span and concession period endogenously and interdependently by maximizing the combined benefits of stakeholders. Based on the estimation of the economic and social development involved, a negotiation space of the concession period interval is obtained, with its lower boundary creating the desired financial return for the private investors and its upper boundary ensuring the economic feasibility of the host government as well as the maximized welfare within the project life. The outcome of the new quantitative model is considered as a suitable basis for future field trials prior to implementation. The structure and details of the model are provided in the paper with Hong Kong tunnel project as a case study to demonstrate its detailed application. The basic contributions of the paper to the theory of construction procurement are that the project life span and concession period are determined jointly and the social benefits taken into account in the examination of project financial benefits. In practical terms, the model goes beyond the current practice of linear-process thinking and should enable engineering consultants to provide project information more rationally and accurately to BOT project bidders and increase the government's prospects of successfully entering into a contract with a concessionaire. This is expected to generate more negotiation space for the government and concessionaire in determining the major socioeconomic features of individual BOT contracts when negotiating the concession period. As a result, the use of the model should increase the total benefit to both parties.
Resumo:
This paper is focused on the study of a vibrating system forced by a rotating unbalance and coupled to a tuned mass damper (TMD). The analysis of the dynamic response of the entire system is used to define the parameters of such device in order to achieve optimal damping properties. The inertial forcing due to the rotating unbalance depends quadratically on the forcing frequency and it leads to optimal tuning parameters that differ from classical values obtained for pure harmonic forcing. Analytical results demonstrate that frequency and damping ratios, as a function of the mass parameter, should be higher than classical optimal parameters. The analytical study is carried out for the undamped primary system, and numerically investigated for the damped primary system. We show that, for practical applications, proper TMD tuning allows to achieve a reduction in the steady-state response of about 20% with respect to the response achieved with a classically tuned damper. Copyright © 2015 by ASME.
Resumo:
This paper describes a concept for a collision avoidance system for ships, which is based on model predictive control. A finite set of alternative control behaviors are generated by varying two parameters: offsets to the guidance course angle commanded to the autopilot and changes to the propulsion command ranging from nominal speed to full reverse. Using simulated predictions of the trajectories of the obstacles and ship, compliance with the Convention on the International Regulations for Preventing Collisions at Sea and collision hazards associated with each of the alternative control behaviors are evaluated on a finite prediction horizon, and the optimal control behavior is selected. Robustness to sensing error, predicted obstacle behavior, and environmental conditions can be ensured by evaluating multiple scenarios for each control behavior. The method is conceptually and computationally simple and yet quite versatile as it can account for the dynamics of the ship, the dynamics of the steering and propulsion system, forces due to wind and ocean current, and any number of obstacles. Simulations show that the method is effective and can manage complex scenarios with multiple dynamic obstacles and uncertainty associated with sensors and predictions.