371 resultados para Nuclear genome evolution
Resumo:
The marsupial order Diprotodontia includes 10 extant families, which occupy all terrestrial habitats across Australia and New Guinea and have evolved remarkable dietary and locomotory diversity. Despite considerable attention, the interrelations of these families have for the most part remained elusive. In this study, we separately model mitochondrial RNA and protein-coding sequences in addition to nuclear protein-coding sequences to provide near-complete resolution of diprotodontian family-level phylogeny. We show that alternative topologies inferred in some previous studies are likely to be artifactual, resulting from branch-length and compositional biases. Subordinal groupings resolved herein include Vombatiformes (wombats and koala) and Phalangerida, which in turn comprises Petauroidea (petaurid gliders and striped, feathertail, ringtail and honey possums) and a clade whose plesiomorphic members possess blade-like premolars (phalangerid possums, kangaroos and their allies and most likely, pygmy possums). The topology resolved reveals ecological niche structuring among diprotodontians that has likely been maintained for more than 40 million years.
Resumo:
We report three developments toward resolving the challenge of the apparent basal polytomy of neoavian birds. First, we describe improved conditional down-weighting techniques to reduce noise relative to signal for deeper divergences and find increased agreement between data sets. Second, we present formulae for calculating the probabilities of finding predefined groupings in the optimal tree. Finally, we report a significant increase in data: nine new mitochondrial (mt) genomes (the dollarbird, New Zealand kingfisher, great potoo, Australian owlet-nightjar, white-tailed trogon, barn owl, a roadrunner [a ground cuckoo], New Zealand long-tailed cuckoo, and the peach-faced lovebird) and together they provide data for each of the six main groups of Neoaves proposed by Cracraft J (2001). We use his six main groups of modern birds as priors for evaluation of results. These include passerines, cuckoos, parrots, and three other groups termed “WoodKing” (woodpeckers/rollers/kingfishers), “SCA” (owls/potoos/owlet-nightjars/hummingbirds/swifts), and “Conglomerati.” In general, the support is highly significant with just two exceptions, the owls move from the “SCA” group to the raptors, particularly accipitrids (buzzards/eagles) and the osprey, and the shorebirds may be an independent group from the rest of the “Conglomerati”. Molecular dating mt genomes support a major diversification of at least 12 neoavian lineages in the Late Cretaceous. Our results form a basis for further testing with both nuclear-coding sequences and rare genomic changes.
Resumo:
The opening phrase of the title is from Charles Darwin’s notebooks (Schweber 1977). It is a double reminder, firstly that mainstream evolutionary theory is not just about describing nature but is particularly looking for mechanisms or ‘causes’, and secondly, that there will usually be several causes affecting any particular outcome. The second part of the title is our concern at the almost universal rejection of the idea that biological mechanisms are sufficient for macroevolutionary changes, thus rejecting a cornerstone of Darwinian evolutionary theory. Our primary aim here is to consider ways of making it easier to develop and to test hypotheses about evolution. Formalizing hypotheses can help generate tests. In an absolute sense, some of the discussion by scientists about evolution is little better than the lack of reasoning used by those advocating intelligent design. Our discussion here is in a Popperian framework where science is defined by that area of study where it is possible, in principle, to find evidence against hypotheses – they are in principle falsifiable. However, with time, the boundaries of science keep expanding. In the past, some aspects of evolution were outside the current boundaries of falsifiable science, but increasingly new techniques and ideas are expanding the boundaries of science and it is appropriate to re-examine some topics. It often appears that over the last few decades there has been an increasingly strong assumption to look first (and only) for a physical cause. This decision is virtually never formally discussed, just an assumption is made that some physical factor ‘drives’ evolution. It is necessary to examine our assumptions much more carefully. What is meant by physical factors ‘driving’ evolution, or what is an ‘explosive radiation’. Our discussion focuses on two of the six mass extinctions, the fifth being events in the Late Cretaceous, and the sixth starting at least 50,000 years ago (and is ongoing). Cretaceous/Tertiary boundary; the rise of birds and mammals. We have had a long-term interest (Cooper and Penny 1997) in designing tests to help evaluate whether the processes of microevolution are sufficient to explain macroevolution. The real challenge is to formulate hypotheses in a testable way. For example the numbers of lineages of birds and mammals that survive from the Cretaceous to the present is one test. Our first estimate was 22 for birds, and current work is tending to increase this value. This still does not consider lineages that survived into the Tertiary, and then went extinct later. Our initial suggestion was probably too narrow in that it lumped four models from Penny and Phillips (2004) into one model. This reduction is too simplistic in that we need to know about survival and ecological and morphological divergences during the Late Cretaceous, and whether Crown groups of avian or mammalian orders may have existed back into the Cretaceous. More recently (Penny and Phillips 2004) we have formalized hypotheses about dinosaurs and pterosaurs, with the prediction that interactions between mammals (and groundfeeding birds) and dinosaurs would be most likely to affect the smallest dinosaurs, and similarly interactions between birds and pterosaurs would particularly affect the smaller pterosaurs. There is now evidence for both classes of interactions, with the smallest dinosaurs and pterosaurs declining first, as predicted. Thus, testable models are now possible. Mass extinction number six: human impacts. On a broad scale, there is a good correlation between time of human arrival, and increased extinctions (Hurles et al. 2003; Martin 2005; Figure 1). However, it is necessary to distinguish different time scales (Penny 2005) and on a finer scale there are still large numbers of possibilities. In Hurles et al. (2003) we mentioned habitat modification (including the use of Geogenes III July 2006 31 fire), introduced plants and animals (including kiore) in addition to direct predation (the ‘overkill’ hypothesis). We need also to consider prey switching that occurs in early human societies, as evidenced by the results of Wragg (1995) on the middens of different ages on Henderson Island in the Pitcairn group. In addition, the presence of human-wary or humanadapted animals will affect the distribution in the subfossil record. A better understanding of human impacts world-wide, in conjunction with pre-scientific knowledge will make it easier to discuss the issues by removing ‘blame’. While continued spontaneous generation was accepted universally, there was the expectation that animals continued to reappear. New Zealand is one of the very best locations in the world to study many of these issues. Apart from the marine fossil record, some human impact events are extremely recent and the remains less disrupted by time.
Resumo:
This study examined the potential for Fe mobilization and greenhouse gas (GHG, e.g. CO2, and CH4) evolution in SEQ soils associated with a range of plantation forestry practices and water-logged conditions. Intact, 30-cm-deep soil cores collected from representative sites were saturated and incubated for 35 days in the laboratory, with leachate and headspace gas samples periodically collected. Minimal Fe dissolution was observed in well-drained sand soils associated with mature, first-rotation Pinus and organic Fe complexation, whereas progressive Fe dissolution occurred over 14 days in clear-felled and replanted Pinus soils with low organic matter and non-crystalline Fe fractions. Both CO2 and CH4 effluxes were relatively lower in clear-felled and replanted soils compared with mature, first-rotation Pinus soils, despite the lack of statistically significant variations in total GHG effluxes associated with different forestry practices. Fe dissolution and GHG evolution in low-lying, water-logged soils adjacent to riparian and estuarine, native-vegetation buffer zones were impacted by mineral and physical soil properties. Highest levels of dissolved Fe and GHG effluxes resulted from saturation of riparian loam soils with high Fe and clay content, as well as abundant organic material and Fe-metabolizing bacteria. Results indicate Pinus forestry practices such as clear-felling and replanting may elevate Fe mobilization while decreasing CO2 and CH4 emissions from well-drained, SEQ plantation soils upon heavy flooding. Prolonged water-logging accelerates bacterially mediated Fe cycling in low-lying, clay-rich soils, leading to substantial Fe dissolution, organic matter mineralization, and CH4 production in riparian native-vegetation buffer zones.
Resumo:
The volcanic succession on Montserrat provides an opportunity to examine the magmatic evolution of island arc volcanism over a ∼2.5 Ma period, extending from the andesites of the Silver Hills center, to the currently active Soufrière Hills volcano (February 2010). Here we present high-precision double-spike Pb isotope data, combined with trace element and Sr-Nd isotope data throughout this period of Montserrat's volcanic evolution. We demonstrate that each volcanic center; South Soufrière Hills, Soufrière Hills, Centre Hills and Silver Hills, can be clearly discriminated using trace element and isotopic parameters. Variations in these parameters suggest there have been systematic and episodic changes in the subduction input. The SSH center, in particular, has a greater slab fluid signature, as indicated by low Ce/Pb, but less sediment addition than the other volcanic centers, which have higher Th/Ce. Pb isotope data from Montserrat fall along two trends, the Silver Hills, Centre Hills and Soufrière Hills lie on a general trend of the Lesser Antilles volcanics, whereas SSH volcanics define a separate trend. The Soufrière Hills and SSH volcanic centers were erupted at approximately the same time, but retain distinctive isotopic signatures, suggesting that the SSH magmas have a different source to the other volcanic centers. We hypothesize that this rapid magmatic source change is controlled by the regional transtensional regime, which allowed the SSH magma to be extracted from a shallower source. The Pb isotopes indicate an interplay between subduction derived components and a MORB-like mantle wedge influenced by a Galapagos plume-like source.
Resumo:
We present a formalism for the analysis of sensitivity of nuclear magnetic resonance pulse sequences to variations of pulse sequence parameters, such as radiofrequency pulses, gradient pulses or evolution delays. The formalism enables the calculation of compact, analytic expressions for the derivatives of the density matrix and the observed signal with respect to the parameters varied. The analysis is based on two constructs computed in the course of modified density-matrix simulations: the error interrogation operators and error commutators. The approach presented is consequently named the Error Commutator Formalism (ECF). It is used to evaluate the sensitivity of the density matrix to parameter variation based on the simulations carried out for the ideal parameters, obviating the need for finite-difference calculations of signal errors. The ECF analysis therefore carries a computational cost comparable to a single density-matrix or product-operator simulation. Its application is illustrated using a number of examples from basic NMR spectroscopy. We show that the strength of the ECF is its ability to provide analytic insights into the propagation of errors through pulse sequences and the behaviour of signal errors under phase cycling. Furthermore, the approach is algorithmic and easily amenable to implementation in the form of a programming code. It is envisaged that it could be incorporated into standard NMR product-operator simulation packages.
Genome-wide association study identifies a common variant associated with risk of endometrial cancer
Resumo:
With many important developments over the last century, nowadays orthopedic bone plate now excels over other types of internal fixators in bone fracture fixation. The developments involve the design, material and implementation techniques of the plates. This paper aims to review the evolution in implementation technique and biomaterial of the orthopedic bone plates. Plates were initially used to fix the underlying bones firmly. Accordingly, Compression plate (CP), Dynamic compression plate (DCP), Limited contact dynamic compression plate (LC-DCP) and Point contact fixator (PC-Fix) were developed. Later, the implementation approach was changed to locking, and the Less Invasive Stabilization System (LISS) plate was introduced as a result. Finally, a combination of both of these approaches has been used by introducing the Locking Compression Plate (LCP). Currently, precontoured LCPs are mainly used for bone fracture fixation. In parallel with structure and implementation techniques, numerous advances have occurred in biomaterials of the plates. Titanium and stainless steel alloys are now the most common biomaterials in production of orthopedic bone plates. However, regarding the biocompatibility, bioactivity and biodegradability characteristics of Mg alloys, Ta alloys, SMAs, carbon fiber composites and bioceramics, these materials are considered as potentially suitable for plates. However, due to poor mechanical properties, they have very limited applications. Therefore, further studies are required in future to solve these problems and make them feasible for heavy-duty bone plates.
Resumo:
1. The phylogeography of freshwater taxa is often integrally linked with landscape changes such as drainage re-alignments that may present the only avenue for historical dispersal for these taxa. Classical models of gene flow do not account for landscape changes and so are of little use in predicting phylogeography in geologically young freshwater landscapes. When the history of drainage formation is unknown, phylogeographical predictions can be based on current freshwater landscape structure, proposed historical drainage geomorphology, or from phylogeographical patterns of co-distributed taxa. 2. This study describes the population structure of a sedentary freshwater fish, the chevron snakehead (Channa striata), across two river drainages on the Indochinese Peninsula. The phylogeographical pattern recovered for C. striata was tested against seven hypotheses based on contemporary landscape structure, proposed history and phylogeographical patterns of codistributed taxa. 3. Consistent with the species ecology, analysis of mitochondrial and microsatellite loci revealed very high differentiation among all sampled sites. A strong signature of historical population subdivision was also revealed within the contemporary Mekong River Basin (MRB). Of the seven phylogeographical hypotheses tested, patterns of co-distributed taxa proved to be the most adequate for describing the phylogeography of C. striata. 4. Results shed new light on SE Asian drainage evolution, indicating that the Middle MRB probably evolved via amalgamation of at least three historically independent drainage sections and in particular that the Mekong River section centred around the northern Khorat Plateau in NE Thailand was probably isolated from the greater Mekong for an extensive period of evolutionary time. In contrast, C. striata populations in the Lower MRB do not show a phylogeographical signature of evolution in historically isolated drainage lines, suggesting drainage amalgamation has been less important for river landscape formation in this region.
Resumo:
Well-established distinctions between amateur and professional are blurring as the impact of social media, changes in cultural consumption, and crises in copyright industries’ business models are felt across society and economy. I call this the increasingly rapid co-evolution of the formal market and informal household sectors and analyse it through the concept of ‘social network markets’ – individual choices are made on the basis of other’s choices and such networked preferencing is enhanced by the growing ubiquity of social media platforms. This may allow us better to understand sources of disruption and innovation in audiovisual production and distribution in wealthy Western markets which are as significant as those posed by informal practices outside the West. I examine what is happening around the monetization and professionalization of online video (YouTube, for example) and the socialization of professional production strategies (transmedia, for example) as innovation from the margins.