180 resultados para Nonhuman
Resumo:
Humans and microbes have developed a symbiotic relationship over time, and alterations in this symbiotic relationship have been linked to several immune mediated diseases such as inflammatory bowel disease, type 1 diabetes and spondyloarthropathies. Improvements in sequencing technologies, coupled with a renaissance in 16S rRNA gene based community profiling, have enabled the characterization of microbiomes throughout the body including the gut. Improved characterization and understanding of the human gut microbiome means the gut flora is progressively being explored as a target for novel therapies including probiotics and faecal microbiota transplants. These innovative therapies are increasingly used for patients with debilitating conditions where conventional treatments have failed. This review discusses the current understanding of the interplay between host genetics and the gut microbiome in the pathogenesis of spondyloarthropathies, and how this may relate to potential therapies for these conditions.
Resumo:
In stark contrast to its horticultural origins, modern genetics is an extremely technology-driven field. Almost all the major advances in the field over the past 20 years have followed technological developments that have permitted change in study designs. The development of PCR in the 1980s led to RFLP mapping of monogenic diseases. The development of fluorescent-tagged genotyping methods led to linkage mapping approaches for common diseases that dominated the 1990s. The development of microarray SNP genotyping has led to the genome-wide association study era of the new millennium. And now the development of next-generation sequencing technologies is about to open up a new era of gene-mapping, enabling many potential new study designs. This review aims to present the strengths and weaknesses of the current approaches, and present some new ideas about gene-mapping approaches that are likely to advance our knowledge of the genes involved in heritable bone traits such as bone mineral density (BMD) and fracture.
Resumo:
Background Pollens of subtropical grasses, Bahia (Paspalum notatum), Johnson (Sorghum halepense), and Bermuda (Cynodon dactylon), are common causes of respiratory allergies in subtropical regions worldwide. Objective To evaluate IgE cross-reactivity of grass pollen (GP) found in subtropical and temperate areas. Methods Case and control serum samples from 83 individuals from the subtropical region of Queensland were tested for IgE reactivity with GP extracts by enzyme-linked immunosorbent assay. A randomly sampled subset of 21 serum samples from patients with subtropical GP allergy were examined by ImmunoCAP and cross-inhibition assays. Results Fifty-four patients with allergic rhinitis and GP allergy had higher IgE reactivity with P notatum and C dactylon than with a mixture of 5 temperate GPs. For 90% of 21 GP allergic serum samples, P notatum, S halepense, or C dactylon specific IgE concentrations were higher than temperate GP specific IgE, and GP specific IgE had higher correlations of subtropical GP (r = 0.771-0.950) than temperate GP (r = 0.317-0.677). In most patients (71%-100%), IgE with P notatum, S halepense, or C dactylon GPs was inhibited better by subtropical GP than temperate GP. When the temperate GP mixture achieved 50% inhibition of IgE with subtropical GP, there was a 39- to 67-fold difference in concentrations giving 50% inhibition and significant differences in maximum inhibition for S halepense and P notatum GP relative to temperate GP. Conclusion Patients living in a subtropical region had species specific IgE recognition of subtropical GP. Most GP allergic patients in Queensland would benefit from allergen specific immunotherapy with a standardized content of subtropical GP allergens.
Resumo:
Grass pollens of the temperate (Pooideae) subfamily and subtropical subfamilies of grasses are major aeroallergen sources worldwide. The subtropical Chloridoideae (e.g. Cynodon dactylon; Bermuda grass) and Panicoideae (e.g. Paspalum notatum; Bahia grass) species are abundant in parts of Africa, India, Asia, Australia and the Americas, where a large and increasing proportion of the world's population abide. These grasses are phylogenetically and ecologically distinct from temperate grasses. With the advent of global warming, it is conceivable that the geographic distribution of subtropical grasses and the contribution of their pollen to the burden of allergic rhinitis and asthma will increase. This review aims to provide a comprehensive synthesis of the current global knowledge of (i) regional variation in allergic sensitivity to subtropical grass pollens, (ii) molecular allergenic components of subtropical grass pollens and (iii) allergic responses to subtropical grass pollen allergens in relevant populations. Patients from subtropical regions of the world show higher allergic sensitivity to grass pollens of Chloridoideae and Panicoideae grasses, than to temperate grass pollens. The group 1 allergens are amongst the allergen components of subtropical grass pollens, but the group 5 allergens, by which temperate grass pollen extracts are standardized for allergen content, appear to be absent from both subfamilies of subtropical grasses. Whilst there are shared allergenic components and antigenic determinants, there are additional clinically relevant subfamily-specific differences, at T- and B-cell levels, between pollen allergens of subtropical and temperate grasses. Differential immune recognition of subtropical grass pollens is likely to impact upon the efficacy of allergen immunotherapy of patients who are primarily sensitized to subtropical grass pollens. The literature reviewed herein highlights the clinical need to standardize allergen preparations for both types of subtropical grass pollens to achieve optimal diagnosis and treatment of patients with allergic respiratory disease in subtropical regions of the world. © 2014 John Wiley & Sons Ltd.
Resumo:
Our understanding of the origin and fate of the IgE-switched B cell has been markedly improved by studies in mouse models. The immediate precursor of the IgE-switched B cell is either a relatively naive nonswitched B cell or a mature IgG-switched B cell. These 2 routes are referred to as the direct and indirect pathways, respectively. IgE responses derived from each pathway differ significantly, largely reflecting the difference in time spent in a germinal center and thus time for clonal expansion, somatic hypermutation, affinity maturation, and acquisition of a memory phenotype. The clinical and therapeutic implications for IgE responses in human subjects are still a matter of debate, largely because the immunization procedures used in the animal models are significantly different from classical atopic sensitization to allergens from pollen and mites. On the basis of the limited information available, it seems likely that these atopic IgE responses are characterized by a relatively low IgG/IgE ratio, low B-cell memory, and modest affinity maturation, which fits well with the direct switching pathway. It is still unresolved how the IgE response evolves to cover a wide epitope repertoire involving many epitopes per allergen, as well as many different allergens from a single allergen source. © 2013 American Academy of Allergy, Asthma & Immunology.
Resumo:
Background: Rhinoviruses (RV) are key triggers in acute asthma exacerbations. Previous studies suggest that men suffer from infectious diseases more frequently and with greater severity than women. Additionally, the immune response to most infections and vaccinations decreases with age. Most immune function studies do not account for such differences, therefore the aim of this study was to determine if the immune response to rhinovirus varies with sex or age. Methods: Blood mononuclear cells were isolated from 63 healthy individuals and grouped by sex and age (≤50 years old and ≥52 years old). Cells were cultured with rhinovirus 16 at a multiplicity of infection of 1. The chemokine IP-10 was measured at 24 h as an index of innate immunity while IFNγ and IL-13 were measured at 5 days as an index of adaptive immunity. Results: Rhinovirus induced IFNγ and IL-13 was significantly higher in ≤50 year old women than in age matched men (p < 0.02 and p < 0.05) and ≥52 year old women (p < 0.02 and p > 0.005). There was no sex or age based difference in rhinovirus induced IP-10 expression. Both IFNγ and IL-13 were negatively correlated with age in women but not in men. Conclusions: This study suggests that pre-menopausal women have a stronger adaptive immune response to rhinovirus infection than men and older people, though the mechanisms responsible for these differences remain to be determined. Our findings highlight the importance of gender and age balance in clinical studies and in the development of new treatments and vaccines.
Resumo:
The clinical efficacy of anti-immunoglobulin E (IgE) therapy indicates a central role for IgE in perpetuation of allergic inflammatory diseases. Omalizumab is now uti- lized in treatment of a wide variety of allergic conditions including severe asthma, allergic rhinitis, atopic dermati- tis, food allergy and urticaria either alone or adjunct with other therapies such as steroid administration or allergen- specific immunotherapy [1, 2]. Current research activity is focused on the cellular and molecular mechanisms by which IgE influences the immunopathogenesis of allergic disease [3]. Increased knowledge of how IgE exerts its effects will underpin effective clinical use of anti-IgE treatment. In this issue Kerzel et al. [4] investigate the effects of altered antibo dy repertoire on the outcomes of an experimental model of allergic asthma.
Resumo:
Patients with allergic diseases produce an excess of allergen-specific IgE, the specific effector molecule that triggers allergic reactions. The provocation for this excess IgE production is still uncertain. Current ideas include oligoclonal expansion of allergen-specific B cells emanating from germinal centres, activation by superantigen of a subset of B cells, or polyclonal B cells class switching to IgE due to an IL-4 predominance. Additionally, genetic elements contribute to a propensity for increased allergen-specific IgE production. The procedure of RT-PCR allows for amplification of infrequent IgE mRNA transcripts from B cells of atopic individuals, and so facilitates examination of expressed Ig cDNA sequences. Better knowledge of the molecular characteristics of IgE produced by patients with allergic diseases would elucidate the immunogenetic basis for elevated allergen-specific IgE levels. The 'immunogenetic footprint' of IgE transcripts may elucidate the origin and activation of IgE-producing B cells in allergic disease. Here we review studies of the immunogenetic features of IgE in allergic diseases, highlighting the major advances and the experimental limitations.
Resumo:
Bahia grass, Paspalum notatum, is a clinically important subtropical grass with a prolonged pollination season from spring to autumn. We aimed to clone and characterise the major Bahia grass pollen allergen, Pas n 1. Grass pollen-allergic patients presenting to a tertiary hospital allergy clinic were tested for IgE reactivity with Bahia grass pollen extract by skin prick testing, ImmunoCAP, ELISA and immunoblotting. Using primers deduced from the N-terminal peptide sequence of a group 1 allergen of Bahia grass pollen extract separated by two-dimensional gel electrophoresis, the complete Pas n 1 cDNA was obtained by rapid amplification of cDNA ends and cloned. Biological relevance of recombinant Pas n 1 expressed in Escherichia coli was assessed by serum IgE reactivity and basophil activation. Twenty-nine of 34 (85%) consecutive patients presenting with grass pollen allergy were skin prick test positive to Bahia grass pollen. The Pas n 1 cDNA has sequence homology with the β-expansin 1 glycoprotein family and is more closely related to the maize pollen group 1 allergen (85% identity) than to ryegrass Lol p 1 or Timothy grass Phl p 1 (64 and 66% identity, respectively). rPas n 1 reacted with serum IgE in 47 of 55 (85%) Bahia grass pollen-allergic patients, activated basophils and inhibited serum IgE reactivity with the 29 kDa band of Bahia grass pollen extract. In conclusion the cDNA for the major group 1 allergen of the subtropical Bahia grass pollen, Pas n 1, was identified and cloned. rPas n 1 is immunologically active and is a valuable reagent for diagnosis and specific immunotherapy of grass pollen allergy.
Resumo:
The chemokine receptor CCR5 contains seven transmembrane-spanning domains. It binds chemokines and acts as co-receptor for macrophage (m)-tropic (or R5) strains of HIV-1. Monoclonal antibodies (mAb) to CCR5, 3A9 and 5C7, were used for biopanning a nonapeptide cysteine (C)-constrained phage-displayed random peptide library to ascertain contact residues and define tertiary structures of possible epitopes on CCR5. Reactivity of antibodies with phagotopes was established by enzyme-linked immunosorbent assay (ELISA). mAb 3A9 identified a phagotope C-HASIYDFGS-C (3A9/1), and 5C7 most frequently identified C-PHWLRDLRV-C (5C7/1). Corresponding peptides were synthesized. Phagotopes and synthetic peptides reacted in ELISA with corresponding antibodies and synthetic peptides inhibited antibody binding to the phagotopes. Reactivity by immunofluorescence of 3A9 with CCR5 was strongly inhibited by the corresponding peptide. Both mAb 3A9 and 5C7 reacted similarly with phagotopes and the corresponding peptide selected by the alternative mAb. The sequences of peptide inserts of phagotopes could be aligned as mimotopes of the sequence of CCR5. For phage 3A9/1, the motif SIYD aligned to residues at the N terminus and FG to residues on the first extracellular loop; for 5C7/1, residues at the N terminus, first extracellular loop, and possibly the third extracellular loop could be aligned and so would contribute to the mimotope. The synthetic peptides corresponding to the isolated phagotopes showed a CD4-dependent reactivity with gp120 of a primary, m-tropic HIV-1 isolate. Thus reactivity of antibodies raised to CCR5 against phage-displayed peptides defined mimotopes that reflect binding sites for these antibodies and reveal a part of the gp120 binding sites on CCR5.
Resumo:
Ross River virus (RRV) is the predominant cause of epidemic polyarthritis in Australia, yet the antigenic determinants are not well defined. We aimed to characterize epitope(s) on RRV-E2 for a panel of monoclonal antibodies (MAbs) that recognize overlapping conformational epitopes on the E2 envelope protein of RRV and that neutralize virus infection of cells in vitro. Phage-displayed random peptide libraries were probed with the MAbs T1E7, NB3C4, and T10C9 using solution-phase and solid-phase biopanning methods. The peptides VSIFPPA and KTAISPT were selected 15 and 6 times, respectively, by all three of the MAbs using solution-phase biopanning. The peptide LRLPPAP was selected 8 times by NB3C4 using solid-phase biopanning; this peptide shares a trio of amino acids with the peptide VSIFPPA. Phage that expressed the peptides VSIFPPA and LRLPPAP were reactive with T1E7 and/or NB3C4, and phage that expressed the peptides VSIFPPA, LRLPPAP, and KTAISPT partially inhibited the reactivity of T1E7 with RRV. The selected peptides resemble regions of RRV-E2 adjacent to sites mutated in neutralization escape variants of RRV derived by culture in the presence of these MAbs (E2 210-219 and 238-245) and an additional region of E2 172-182. Together these sites represent a conformational epitope of E2 that is informative of cellular contact sites on RRV.
Resumo:
The causes of autoimmune diseases have yet to be fully elucidated. Autoantibodies, autoreactive T cell responses, the presence of a predisposing major histocompatibility complex (MHC) haplotype and responsiveness to corticosteroids are features, and some are possibly contributory causes of autoimmune disease. The most challenging question is how autoimmune diseases are triggered. Molecular mimicry of host cell determinants by epitopes of infectious agents with ensuing cross-reactivity is one of the most popular yet still controversial theories for the initiation of autoimmune diseases [1]. Throughout the 1990s, hundreds of research articles focusing to various extents on epitope mimicry, as it is more accurately described in an immunological context, were published annually. Many of these articles presented data that were consistent with the hypothesis of mimicry but that did not actually prove the theory. Other equally convincing reports indicated that epitope mimicry was not the cause of the autoimmune disease despite sequence similarity between molecules of infectious agents and the host. Some 20 years ago, Rothman [2] proposed a model for disease causation and I have used this as a framework to examine the role of epitope mimicry in the development of autoimmune disease. The thesis of Rothman’s model is that an effect, in this instance autoimmune disease, arises as a result of a cause. In most cases, multiple-component causes contribute synergistically to yield the effect, and each of these components alone is insufficient as a cause. Logically, some component causes, such as the presence of a particular autoimmune response, are also necessary causes.
Resumo:
There have been recent improvements in the clinical understanding and definition of the major types of autoimmune liver disease. However, still lacking is knowledge of their prevalence and pathogenesis. Three areas of study are in progress in our laboratory. First, in type 1 autoimmune hepatitis, the search continues to identify a liver/disease-specific autoantigenic reactant. Using hepatocyte membrane preparations, immunoblotting has underlined the problem of distinguishing, among multiple reactants, those that may be causally rather than consequentially related to hepatocellular damage. Second, in primary biliary cirrhosis (PBC), the need for population screening to ascertain prevalence and detect preclinical cases can be met by a rapid automated procedure for detection, by specific enzyme inhibition in microtitre wells, of antibody (anti-M2) to the pyruvate dehydrogenase complex E2 subunit (PDC-E2). Third, the structure of the conformational epitope within the inner lipoyl domain of PDC-E2 is being investigated by screening random phage-displayed peptide libraries using PBC sera. This has yielded phage clones in which the sequence of the peptide insert portrays the structure of this epitope, as judged by clustering of PBC-derived sequences to particular branches of a guide-tree that shows relatedness of peptides, and by reactivity of selected phage clones with anti-PDC-E2. Thus phage display identifies a peptide 'mimotope' of the antibody epitope in the inner lipoyl domain of PDC-E2.
Resumo:
The characterization of B cell epitopes has been advanced by the use of random peptide libraries displayed within the coat protein of bacteriophage. This technique was applied to the monoclonal antibody (mAb) C1 to type II collagen (CII-C1). CII-C1 is known to react with a conformational epitope on type II collagen that includes residues 359-363. Three rounds of selection were used to screen two random nonameric phage libraries and 18 phagotopes were isolated. CII-C1 reacted by ELISA with 17 of the 18 phagotopes: one phagotope contained a stop codon. Of the eight most reactive phage, seven inhibited the reactivity by ELISA of CII-C1 with type II collagen. Of the 18 phage isolated, 11 encoded the motif F-G-x-Q with the sequence F-G-S-Q in 6, 2 encoded F-G-Q, and one the reverse motif Q-x-y-F. Most phagotopes that inhibited the reactivity of CII-C1 encoded two particular motifs consisting of two basic amino acid residues and a hydrophobic residue in the first part of the insert and the F-G-x-Q or F-G-Q motif ill the second part; phagotopes which contained only one basic residue in the first part of the sequence were less reactive. These motifs are not represented in the linear sequence of type II collagen and thus represent mimotopes of the epitope for CII-C1 on type II collagen. There were five phagotopes with peptide inserts containing the sequence RLPFG occurring in the Epstein-Barr virus nuclear antigen, EBNA- 1. This is of interest because EBV has been implicated in the initiation of rheumatoid arthritis (RA) by reason of increased reactivity to EBNA-1 in RA sera. In conclusion, the phage display technique disclosed mimotopes for a conformational epitope of type II collagen, and revealed an interesting homology with a sequence of the EBNA-1 antigen from Epstein Barr virus.
Resumo:
Serum and synovial antibody reactivities of caprine arthritis encephalitis virus (CAEV) infected goats were assessed by Western blotting against purified CAEV antigen and the greatest intensity of reactivity in the serum of arthritic goats was to the gp45 transmembrane protein (TM). The extracytoplasmic domain of the TM gene was cloned into a pGEX vector and expressed in Escherichia coil as a glutathione S transferase fusion protein (GST-TM). This clone was found to be 90.5 and 89.2% homologous to published sequences of CAEV TM gene. Serum of 16 goats naturally infected with CAEV were examined by Western blotting for reactivity to the fusion protein. Antibody reactivity to the GST-TM correlated with clinically detectable arthritis (R = 0.642, P ≤ 0.007). The hypothesis that the immune response to the envelope proteins of the CAEV contributes to the severity of arthritis in goats naturally infected with CAEV via epitope mimicry was tested. Antibodies from 5 CAEV infected goats were affinity purified against the GST-TM fusion protein and tested for cross-reactivity with a series of goat synovial extracts and proteogylcans. No serum antibody response or cross-reactivity of affinity purified antibodies could be detected. Peptides of the CAEV SU that were predicted to be linear epitopes and a similar heat shock protein 83 (HSP) peptide identified by database searching, were synthesized and tested for reactivity in CAEV goats using ELISA, in vitro lymphocyte proliferation and delayed type hypersensitivity (DTH) assays. Peripheral blood lymphocytes from 10 of 17 goats with long term natural CAEV infections proliferated in vitro in response to CAEV and in vivo 3 of 7 CAEV infected goats had a DTH reaction to CAEV antigen. However, none of the peptides elicited significant cell mediated immune responses from CAEV infected goats. No antibody reactivity to the SU peptides or HSP peptide was found. We observed that the antibody reactivity to the CAEV TM protein associated with severity of arthritis however epitope mimicry by the envelope proteins of CAEV is unlikely to be involved.