254 resultados para Mothers of Plaza de Mayo
Resumo:
Many species engage in polyandry, resulting in the potential for sexual selection to continue post-copulation through sperm competition and/or cryptic female choice. The relative importance of pre- vs. post-copulatory processes remains unknown for most species despite this information being fundamental for understanding the evolutionary consequences of sexual selection. The Australian fruit fly Drosophila serrata has become a prominent model system for studying precopulatory sexual selection, such as mating preferences and their influence on the evolution of sexually selected traits. Here, we investigated polyandry and the potential for post-copulatory sexual selection in this species using indirect paternity analysis. We genotyped 21 wild-caught and 19 laboratory-reared mothers and their offspring (a total of 787 flies) at six microsatellite loci and found extensive polyandry, with all broods surveyed having at least two sires. Female remating rates were higher than in other Drosophila surveyed to date and no significant differences were found between laboratory and field populations. Additionally, we found evidence for biased sperm usage in several broods of D. serrata. Paternity skew occurred more frequently in broods from the field population than the laboratory one, suggesting differences between the two environments in the level of post-copulatory sexual selection. Our data suggest that D. serrata represents a promising system for studying the interaction between pre- and post-copulatory sexual selection in driving the evolution of sexually selected phenotypes.
Resumo:
Objective: To estimate the prevalence of lifetime infertility in Australian women born in 1946-51 and examine their uptake of treatment. Methods: Participants in the Australian Longitudinal Study on Women's Health born in 1946-51 (n=13,715) completed up to four mailed surveys from 1996 to 2004. The odds of infertility were estimated using logistic regression with adjustment for socio-demographic and reproductive factors. Results: Among participants, 92.1% had been pregnant. For women who had been pregnant (n=12738): 56.5% had at least one birth but no pregnancy loss (miscarriage and/or termination); 39.9% experienced both birth and loss; and 3.6% had a loss only. The lifetime prevalence of infertility was 11.0%. Among women who reported infertility (n=1511), 41.7% used treatment. Women had higher odds of infertility when they had reproductive histories of losses only (OR range 9.0-43.5) or had never been pregnant (OR=15.7, 95%CI 11.8-20.8); and higher odds for treatment: losses only (OR range 2.5-9.8); or never pregnant (1.96, 1.28-3.00). Women who delayed their first birth until aged 30+ years had higher odds of treatment (OR range 3.2-4.3). Conclusions: About one in ten women experienced infertility and almost half used some form of treatment, especially those attempting pregnancy after 1980. Older first time mothers had an increased uptake of treatment as assisted reproductive technologies (ART) developed. Implications: This study provided evidence of the early uptake of treatment prior to 1979 when the national register of invasive ART was developed and later uptake prior to 1998 when data on non-invasive ART were first collected.
Resumo:
Noncompliance with speed limits is one of the major safety concerns in roadwork zones. Although numerous studies have attempted to evaluate the effectiveness of safety measures on speed limit compliance, many report inconsistent findings. This paper aims to review the effectiveness of four categories of roadwork zone speed control measures: Informational, Physical, Enforcement, and Educational measures. While informational measures (static signage, variable message signage) evidently have small to moderate effects on speed reduction, physical measures (rumble strips, optical speed bars) are found ineffective for transient and moving work zones. Enforcement measures (speed camera, police presence) have the greatest effects, while educational measures also have significant potential to improve public awareness of roadworker safety and to encourage slower speeds in work zones. Inadequate public understanding of roadwork risks and hazards, failure to notice signs, and poor appreciation of safety measures are the major causes of noncompliance with speed limits.
Resumo:
Research interest in pedestrian behaviour spans the retail industry, emergency services, urban planners and other agencies. Most models to simulate and model pedestrian movement can be distinguished on the basis of geographical scale, from the micro-scale movement of obstacle avoidance, through the meso-scale of individuals planning multi-stop shopping trips, up to the macro-scale of overall flow of masses of people between places. In this paper, route-choice decision-making model is devised for modelling passengers flow in airport terminal. A set of devised advanced traits of passengers is firstly proposed. Advanced traits take into account a passenger’s cognitive preferences and demonstrate underlying motivations of route-choice decisions. Although the activities of passengers are normally regarded as stochastic and sometimes unpredictable, real scenarios of passenger flows are basically feasible to be compared with virtual simulations in terms of tactical route-choice decision-making. Passengers in the model are as intelligent agents who possess a bunch of initial basic traits and are categorized into five distinguish groups in terms of routing preferences. Route choices are consecutively determined by inferring current advanced traits according to the utility matrix.
Resumo:
The development and design of electric high power devices with electromagnetic computer-aided engineering (EM-CAE) software such as the Finite Element Method (FEM) and Boundary Element Method (BEM) has been widely adopted. This paper presents the analysis of a Fault Current Limiter (FCL), which acts as a high-voltage surge protector for power grids. A prototype FCL was built. The magnetic flux in the core and the resulting electromagnetic forces in the winding of the FCL were analyzed using both FEM and BEM. An experiment on the prototype was conducted in a laboratory. The data obtained from the experiment is compared to the numerical solutions to determine the suitability and accuracy of the two methods.
Resumo:
Fast calculation of quantities such as in-cylinder volume and indicated power is important in internal combustion engine research. Multiple channels of data including crank angle and pressure were collected for this purpose using a fully instrumented diesel engine research facility. Currently, existing methods use software to post-process the data, first calculating volume from crank angle, then calculating the indicated work and indicated power from the area enclosed by the pressure-volume indicator diagram. Instead, this work investigates the feasibility of achieving real-time calculation of volume and power via hardware implementation on Field Programmable Gate Arrays (FPGAs). Alternative hardware implementations were investigated using lookup tables, Taylor series methods or the CORDIC (CoOrdinate Rotation DIgital Computer) algorithm to compute the trigonometric operations in the crank angle to volume calculation, and the CORDIC algorithm was found to use the least amount of resources. Simulation of the hardware based implementation showed that the error in the volume and indicated power is less than 0.1%.
Resumo:
Rates of dehydration/rehydration are important quality parameters for dried products. Theoretically, if there are no adverse effects on the integrity of the tissue structure, it should absorb water to the same moisture content of the initial product before drying.The purpose of this work is to semi-automate the process of detection of cell structure boundaries as a food is dehydrated and rehydrated. This will enable food materials researchers to quantify changes to material’s structure as these processes take place. Images of potato cells as they were dehydrated and rehydrated were taken using an electron microscope. Cell boundaries were detected using an image processing algorithm. Average cell area and perimeter at each stage of dehydration were calculated and plotted versus time. The results show that the algorithm can successfully identify cell boundaries.
Resumo:
This paper presents an analytical model to study the effect of stiffening ribs on vibration transmission between two rectangular plates coupled at right angle. Interesting wave attenuation patterns were observed by placing the stiffening rib either on the source or on the receiving plate. The result can be used to improve the understanding of vibration and for vibration control of more complex structures such as transformer tanks and machine covers.
Resumo:
Fruit drying is a process of removing moisture to preserve fruits by preventing microbial spoilage. It increases shelf life, reduce weight and volume thus minimize packing, storage, and transportation cost and enable storage of food under ambient environment. But, it is a complex process which involves combination of heat and mass transfer and physical property change and shrinkage of the material. In this background, the aim of this paper to develop a mathematical model to simulate coupled heat and mass transfer during convective drying of fruit. This model can be used predict the temperature and moisture distribution inside the fruits during drying. Two models were developed considering shrinkage dependent and temperature dependent moisture diffusivity and the results were compared. The governing equations of heat and mass transfer are solved and a parametric study has been done with Comsol Multiphysics 4.3. The predicted results were validated with experimental data.
A particle-based micromechanics approach to simulate structural changes of plant cells during drying
Resumo:
This paper is concerned with applying a particle-based approach to simulate the micro-level cellular structural changes of plant cells during drying. The objective of the investigation was to relate the micro-level structural properties such as cell area, diameter and perimeter to the change of moisture content of the cell. Model assumes a simplified cell which consists of two basic components, cell wall and cell fluid. The cell fluid is assumed to be a Newtonian fluid with higher viscosity compared to water and cell wall is assumed to be a visco-elastic solid boundary located around the cell fluid. Cell fluid is modelled with Smoothed Particle Hydrodynamics (SPH) technique and for the cell wall; a Discrete Element Method (DEM) is used. The developed model is two-dimensional, but accounts for three-dimensional physical properties of real plant cells. Drying phenomena is simulated as fluid mass reductions and the model is used to predict the above mentioned structural properties as a function of cell fluid mass. Model predictions are found to be in fairly good agreement with experimental data in literature and the particle-based approach is demonstrated to be suitable for numerical studies of drying related structural deformations. Also a sensitivity analysis is included to demonstrate the influence of key model parameters to model predictions.
Resumo:
A range of risk management initiatives have been introduced in organisations in attempt to reduce occupational road incidents. However a discrepancy exists between the initiatives that are frequently implemented in organisations and the initiatives that have demonstrated scientific merit in improving occupational road safety. Given that employees’ beliefs may facilitate or act as a barrier to implementing initiatives, it is important to understand whether initiatives with scientific merit are perceived to be effective by employees. To explore employee perceptions pertaining to occupational road safety initiatives, a questionnaire was administered to 679 employees sourced from four Australian organisations. Participants ranged in age from 18 years to 65 years (M = 42, SD = 11). Participants rated 35 initiatives based on how effective they thought they would be in improving road safety in their organisation. The initiatives perceived by employees to be most effective in managing occupational road risks comprised: making vehicle safety features standard e.g. passenger airbags; practical driver skills training; and investigation of serious vehicle incidents. The initiatives perceived to be least effective in managing occupational road risks comprised: signing a promise card commitment to drive safely; advertising the organisation’s phone number on vehicles for complaints and compliments; and consideration of driving competency in staff selection process. Employee perceptions were analysed at a factor level and at an initiative level. The mean scores for the three extracted factors revealed that employees believed occupational road risks could best be managed by the employer implementing engineering and human resource methods to enhance road safety. Initiatives relating to employer management of identified risk factors were perceived to be more effective than feedback or motivational methods that required employees to accept responsibility for their driving safety. Practitioners can use the findings from this study to make informed decisions about how they select, manage and market occupational safety initiatives.
Resumo:
The research described in this paper forms part of an in-depth investigation of safety culture in one of Australia’s largest construction companies. The research builds on a previous qualitative study with organisational safety leaders and further investigates how safety culture is perceived and experienced by organisational members, as well as how this relates to their safety behaviour and related outcomes at work. Participants were 2273 employees of the case study organisation, with 689 from the Construction function and 1584 from the Resources function. The results of several analyses revealed some interesting organisational variance on key measures. Specifically, the Construction function scored significantly higher on all key measures: safety climate, safety motivation, safety compliance, and safety participation. The results are discussed in terms of relevance in an applied research context.
Resumo:
Background: The incidence of mandibular fractures in the Northern Territory of Australia is very high, especially among Indigenous people. Alcohol intoxication is implicated in the majority of facial injuries, and substance use is therefore an important target for secondary prevention. The current study tests the efficacy of a brief therapy, Motivational Care Planning, in improving wellbeing and substance misuse in youth and adults hospitalised with alcohol-related facial trauma. Methods and design: The study is a randomised controlled trial with 6 months of follow-up, to examine the effectiveness of a brief and culturally adapted intervention in improving outcomes for trauma patients with at-risk drinking admitted to the Royal Darwin Hospital maxillofacial surgery unit. Potential participants are identified using AUDIT-C questionnaire. Eligible participants are randomised to either Motivational Care Planning (MCP) or Treatment as Usual (TAU). The outcome measures will include quantity and frequency of alcohol and other substance use by Timeline Followback. The recruitment target is 154 participants, which with 20% dropout, is hoped to provide 124 people receiving treatment and follow-up. Discussion: This project introduces screening and brief interventions for high-risk drinkers admitted to the hospital with facial trauma. It introduces a practical approach to integrating brief interventions in the hospital setting, and has potential to demonstrate significant benefits for at-risk drinkers with facial trauma.