469 resultados para Model information
Resumo:
We give a direct construction of a certificateless key encapsulation mechanism (KEM) in the standard model that is more efficient than the generic constructions proposed before by Huang and Wong \cite{DBLP:conf/acisp/HuangW07}. We use a direct construction from Kiltz and Galindo's KEM scheme \cite{DBLP:conf/acisp/KiltzG06} to obtain a certificateless KEM in the standard model; our construction is roughly twice as efficient as the generic construction. We also address the security flaw discovered by Selvi et al. \cite{cryptoeprint:2009:462}.
Resumo:
We show how to construct a certificateless key agreement protocol from the certificateless key encapsulation mechanism introduced by \cite{lippold-ICISC_2009} in ICISC 2009 using the \cite{DBLP:conf/acisp/BoydCNP08} protocol from ACISP 2008. We introduce the Canetti-Krawczyk (CK) model for certificateless cryptography, give security notions for Type I and Type II adversaries in the CK model, and highlight the differences to the existing e$^2$CK model discussed by \cite{DBLP:conf/pairing/LippoldBN09}. The resulting CK model is more relaxed thus giving more power to the adversary than the original CK model.
Resumo:
Uninhabited aerial vehicles (UAVs) are a cutting-edge technology that is at the forefront of aviation/aerospace research and development worldwide. Many consider their current military and defence applications as just a token of their enormous potential. Unlocking and fully exploiting this potential will see UAVs in a multitude of civilian applications and routinely operating alongside piloted aircraft. The key to realising the full potential of UAVs lies in addressing a host of regulatory, public relation, and technological challenges never encountered be- fore. Aircraft collision avoidance is considered to be one of the most important issues to be addressed, given its safety critical nature. The collision avoidance problem can be roughly organised into three areas: 1) Sense; 2) Detect; and 3) Avoid. Sensing is concerned with obtaining accurate and reliable information about other aircraft in the air; detection involves identifying potential collision threats based on available information; avoidance deals with the formulation and execution of appropriate manoeuvres to maintain safe separation. This thesis tackles the detection aspect of collision avoidance, via the development of a target detection algorithm that is capable of real-time operation onboard a UAV platform. One of the key challenges of the detection problem is the need to provide early warning. This translates to detecting potential threats whilst they are still far away, when their presence is likely to be obscured and hidden by noise. Another important consideration is the choice of sensors to capture target information, which has implications for the design and practical implementation of the detection algorithm. The main contributions of the thesis are: 1) the proposal of a dim target detection algorithm combining image morphology and hidden Markov model (HMM) filtering approaches; 2) the novel use of relative entropy rate (RER) concepts for HMM filter design; 3) the characterisation of algorithm detection performance based on simulated data as well as real in-flight target image data; and 4) the demonstration of the proposed algorithm's capacity for real-time target detection. We also consider the extension of HMM filtering techniques and the application of RER concepts for target heading angle estimation. In this thesis we propose a computer-vision based detection solution, due to the commercial-off-the-shelf (COTS) availability of camera hardware and the hardware's relatively low cost, power, and size requirements. The proposed target detection algorithm adopts a two-stage processing paradigm that begins with an image enhancement pre-processing stage followed by a track-before-detect (TBD) temporal processing stage that has been shown to be effective in dim target detection. We compare the performance of two candidate morphological filters for the image pre-processing stage, and propose a multiple hidden Markov model (MHMM) filter for the TBD temporal processing stage. The role of the morphological pre-processing stage is to exploit the spatial features of potential collision threats, while the MHMM filter serves to exploit the temporal characteristics or dynamics. The problem of optimising our proposed MHMM filter has been examined in detail. Our investigation has produced a novel design process for the MHMM filter that exploits information theory and entropy related concepts. The filter design process is posed as a mini-max optimisation problem based on a joint RER cost criterion. We provide proof that this joint RER cost criterion provides a bound on the conditional mean estimate (CME) performance of our MHMM filter, and this in turn establishes a strong theoretical basis connecting our filter design process to filter performance. Through this connection we can intelligently compare and optimise candidate filter models at the design stage, rather than having to resort to time consuming Monte Carlo simulations to gauge the relative performance of candidate designs. Moreover, the underlying entropy concepts are not constrained to any particular model type. This suggests that the RER concepts established here may be generalised to provide a useful design criterion for multiple model filtering approaches outside the class of HMM filters. In this thesis we also evaluate the performance of our proposed target detection algorithm under realistic operation conditions, and give consideration to the practical deployment of the detection algorithm onboard a UAV platform. Two fixed-wing UAVs were engaged to recreate various collision-course scenarios to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. Based on this collected data, our proposed detection approach was able to detect targets out to distances ranging from about 400m to 900m. These distances, (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning ahead of impact that approaches the 12.5 second response time recommended for human pilots. Furthermore, readily available graphic processing unit (GPU) based hardware is exploited for its parallel computing capabilities to demonstrate the practical feasibility of the proposed target detection algorithm. A prototype hardware-in- the-loop system has been found to be capable of achieving data processing rates sufficient for real-time operation. There is also scope for further improvement in performance through code optimisations. Overall, our proposed image-based target detection algorithm offers UAVs a cost-effective real-time target detection capability that is a step forward in ad- dressing the collision avoidance issue that is currently one of the most significant obstacles preventing widespread civilian applications of uninhabited aircraft. We also highlight that the algorithm development process has led to the discovery of a powerful multiple HMM filtering approach and a novel RER-based multiple filter design process. The utility of our multiple HMM filtering approach and RER concepts, however, extend beyond the target detection problem. This is demonstrated by our application of HMM filters and RER concepts to a heading angle estimation problem.
Resumo:
There has been a worldwide trend to increase axle loads and train speeds. This means that railway track degradation will be accelerated, and track maintenance costs will be increased significantly. There is a need to investigate the consequences of increasing traffic load. The aim of the research is to develop a model for the analysis of physical degradation of railway tracks in response to changes in traffic parameters, especially increased axle loads and train speeds. This research has developed an integrated track degradation model (ITDM) by integrating several models into a comprehensive framework. Mechanistic relationships for track degradation hav~ ?een used wherever possible in each of the models contained in ITDM. This overcc:mes the deficiency of the traditional statistical track models which rely heavily on historical degradation data, which is generally not available in many railway systems. In addition statistical models lack the flexibility of incorporating future changes in traffic patterns or maintenance practices. The research starts with reviewing railway track related studies both in Australia and overseas to develop a comprehensive understanding of track performance under various traffic conditions. Existing railway related models are then examined for their suitability for track degradation analysis for Australian situations. The ITDM model is subsequently developed by modifying suitable existing models, and developing new models where necessary. The ITDM model contains four interrelated submodels for rails, sleepers, ballast and subgrade, and track modulus. The rail submodel is for rail wear analysis and is developed from a theoretical concept. The sleeper submodel is for timber sleepers damage prediction. The submodel is developed by modifying and extending an existing model developed elsewhere. The submodel has also incorporated an analysis for the likelihood of concrete sleeper cracking. The ballast and subgrade submodel is evolved from a concept developed in the USA. Substantial modifications and improvements have been made. The track modulus submodel is developed from a conceptual method. Corrections for more global track conditions have been made. The integration of these submodels into one comprehensive package has enabled the interaction between individual track components to be taken into account. This is done by calculating wheel load distribution with time and updating track conditions periodically in the process of track degradation simulation. A Windows-based computer program ~ssociated with ITDM has also been developed. The program enables the user to carry out analysis of degradation of individual track components and to investigate the inter relationships between these track components and their deterioration. The successful implementation of this research has provided essential information for prediction of increased maintenance as a consequence of railway trackdegradation. The model, having been presented at various conferences and seminars, has attracted wide interest. It is anticipated that the model will be put into practical use among Australian railways, enabling track maintenance planning to be optimized and potentially saving Australian railway systems millions of dollars in operating costs.
Resumo:
Automatic spoken Language Identi¯cation (LID) is the process of identifying the language spoken within an utterance. The challenge that this task presents is that no prior information is available indicating the content of the utterance or the identity of the speaker. The trend of globalization and the pervasive popularity of the Internet will amplify the need for the capabilities spoken language identi¯ca- tion systems provide. A prominent application arises in call centers dealing with speakers speaking di®erent languages. Another important application is to index or search huge speech data archives and corpora that contain multiple languages. The aim of this research is to develop techniques targeted at producing a fast and more accurate automatic spoken LID system compared to the previous National Institute of Standards and Technology (NIST) Language Recognition Evaluation. Acoustic and phonetic speech information are targeted as the most suitable fea- tures for representing the characteristics of a language. To model the acoustic speech features a Gaussian Mixture Model based approach is employed. Pho- netic speech information is extracted using existing speech recognition technol- ogy. Various techniques to improve LID accuracy are also studied. One approach examined is the employment of Vocal Tract Length Normalization to reduce the speech variation caused by di®erent speakers. A linear data fusion technique is adopted to combine the various aspects of information extracted from speech. As a result of this research, a LID system was implemented and presented for evaluation in the 2003 Language Recognition Evaluation conducted by the NIST.
Resumo:
This paper presents a travel time prediction model and evaluates its performance and transferability. Advanced Travelers Information Systems (ATIS) are gaining more and more importance, increasing the need for accurate, timely and useful information to the travelers. Travel time information quantifies the traffic condition in an easy to understand way for the users. The proposed travel time prediction model is based on an efficient use of nearest neighbor search. The model is calibrated for optimal performance using Genetic Algorithms. Results indicate better performance by using the proposed model than the presently used naïve model.
Resumo:
The work presents a new approach to the problem of simultaneous localization and mapping - SLAM - inspired by computational models of the hippocampus of rodents. The rodent hippocampus has been extensively studied with respect to navigation tasks, and displays many of the properties of a desirable SLAM solution. RatSLAM is an implementation of a hippocampal model that can perform SLAM in real time on a real robot. It uses a competitive attractor network to integrate odometric information with landmark sensing to form a consistent representation of the environment. Experimental results show that RatSLAM can operate with ambiguous landmark information and recover from both minor and major path integration errors.
Resumo:
One major gap in transportation system safety management is the ability to assess the safety ramifications of design changes for both new road projects and modifications to existing roads. To fulfill this need, FHWA and its many partners are developing a safety forecasting tool, the Interactive Highway Safety Design Model (IHSDM). The tool will be used by roadway design engineers, safety analysts, and planners throughout the United States. As such, the statistical models embedded in IHSDM will need to be able to forecast safety impacts under a wide range of roadway configurations and environmental conditions for a wide range of driver populations and will need to be able to capture elements of driving risk across states. One of the IHSDM algorithms developed by FHWA and its contractors is for forecasting accidents on rural road segments and rural intersections. The methodological approach is to use predictive models for specific base conditions, with traffic volume information as the sole explanatory variable for crashes, and then to apply regional or state calibration factors and accident modification factors (AMFs) to estimate the impact on accidents of geometric characteristics that differ from the base model conditions. In the majority of past approaches, AMFs are derived from parameter estimates associated with the explanatory variables. A recent study for FHWA used a multistate database to examine in detail the use of the algorithm with the base model-AMF approach and explored alternative base model forms as well as the use of full models that included nontraffic-related variables and other approaches to estimate AMFs. That research effort is reported. The results support the IHSDM methodology.
Resumo:
Measures and theories of information abound, but there are few formalised methods for treating the contextuality that can manifest in different information systems. Quantum theory provides one possible formalism for treating information in context. This paper introduces a quantum-like model of the human mental lexicon, and shows one set of recent experimental data suggesting that concept combinations can indeed behave non-separably. There is some reason to believe that the human mental lexicon displays entanglement.
Resumo:
This paper investigates what happened in one Australian primary school as part of the establishment, use and development of a computer laboratory over a period of two years. As part of a school renewal project, the computer lab was introduced as an ‘innovative’ way to improve the skills of teachers and children in information and communication technologies (ICT) and to lead to curriculum change. However, the way in which the lab was conceptualised and used worked against achieving these goals. The micropolitics of educational change and an input-output understanding of computers meant that change remained structural rather pedagogical or philosophical.
Resumo:
This paper addresses the problem of constructing consolidated business process models out of collections of process models that share common fragments. The paper considers the construction of unions of multiple models (called merged models) as well as intersections (called digests). Merged models are intended for analysts who wish to create a model that subsumes a collection of process models - typically representing variants of the same underlying process - with the aim of replacing the variants with the merged model. Digests, on the other hand, are intended for analysts who wish to identify the most recurring fragments across a collection of process models, so that they can focus their efforts on optimizing these fragments. The paper presents an algorithm for computing merged models and an algorithm for extracting digests from a merged model. The merging and digest extraction algorithms have been implemented and tested against collections of process models taken from multiple application domains. The tests show that the merging algorithm produces compact models and scales up to process models containing hundreds of nodes. Furthermore, a case study conducted in a large insurance company has demonstrated the usefulness of the merging and digest extraction operators in a practical setting.
Resumo:
Survival probability prediction using covariate-based hazard approach is a known statistical methodology in engineering asset health management. We have previously reported the semi-parametric Explicit Hazard Model (EHM) which incorporates three types of information: population characteristics; condition indicators; and operating environment indicators for hazard prediction. This model assumes the baseline hazard has the form of the Weibull distribution. To avoid this assumption, this paper presents the non-parametric EHM which is a distribution-free covariate-based hazard model. In this paper, an application of the non-parametric EHM is demonstrated via a case study. In this case study, survival probabilities of a set of resistance elements using the non-parametric EHM are compared with the Weibull proportional hazard model and traditional Weibull model. The results show that the non-parametric EHM can effectively predict asset life using the condition indicator, operating environment indicator, and failure history.
Resumo:
We advance the proposition that dynamic stochastic general equilibrium (DSGE) models should not only be estimated and evaluated with full information methods. These require that the complete system of equations be specified properly. Some limited information analysis, which focuses upon specific equations, is therefore likely to be a useful complement to full system analysis. Two major problems occur when implementing limited information methods. These are the presence of forward-looking expectations in the system as well as unobservable non-stationary variables. We present methods for dealing with both of these difficulties, and illustrate the interaction between full and limited information methods using a well-known model.