215 resultados para Migraine without aura
Resumo:
Migraine is a complex familial condition that imparts a significant burden on society. There is evidence for a role of genetic factors in migraine, and elucidating the genetic basis of this disabling condition remains the focus of much research. In this review we discuss results of genetic studies to date, from the discovery of the role of neural ion channel gene mutations in familial hemiplegic migraine (FHM) to linkage analyses and candidate gene studies in the more common forms of migraine. The success of FHM regarding discovery of genetic defects associated with the disorder remains elusive in common migraine, and causative genes have not yet been identified. Thus we suggest additional approaches for analysing the genetic basis of this disorder. The continuing search for migraine genes may aid in a greater understanding of the mechanisms that underlie the disorder and potentially lead to significant diagnostic and therapeutic applications.
Resumo:
Familial hemiplegic migraine is a severe, rare subtype of migraine. Gene mutations on chromosome 19 have been identified in the calcium channel, voltage-dependent, P/Q type, alpha-1A subunit gene (chromosome 19p13) for familial hemiplegic migraine. Recently a gene mutation (Serine-218-Leucine) for a dramatic syndrome associated with familial hemiplegic migraine, commonly named “migraine coma”, has implicated exon 5 of this gene. The occurrence of trivial head trauma, in such familial hemiplegic migraine patients, may also be complicated by severe, sometimes even fatal, cerebral edema and coma occurring after a lucid interval. Sporadic hemiplegic migraine shares a similar spectrum of clinical presentation and genetic heterogeneity. The case report presented in this article implicates the involvement of the Serine-218-Leucine mutation in the extremely rare disorder of minor head trauma–induced migraine coma. We conclude that the Serine-218-Leucine mutation in the calcium channel, voltage-dependent, P/Q type, alpha-1A subunit gene is involved in sporadic hemiplegic migraine, delayed cerebral edema and coma after minor head trauma.
Resumo:
Background We have previously reported an association between the estrogen receptor 1 (ESR1) gene exon 8 G594A polymorphism and migraine susceptibility in two independent Australian cohorts. In this paper we report results of analysis of two further single nucleotide polymorphisms (SNPs) in the ESR1 gene in the same study group, the T/C Pvu II SNP in intron 1 and the C325G SNP in exon 4, as well as results of linkage disequilibrium (LD) analysis on these markers. Methods We investigated these variants by case-control association analysis in a cohort of 240 migraineurs and 240 matched controls. The SNPs were genotyped using specific restriction enzyme assays. Results were analysed using contingency table methods incorporating the chi-squared statistic. LD results are presented as D' statistics with associated P values. Results We found no evidence for association of the Pvu II T/C polymorphism and the C325G polymorphism and migraine susceptibility and no evidence for LD between these two SNPs and the previously implicated exon 8 G594A marker. Conclusion We have found no role for the polymorphisms in intron 1 and exon 4 with migraine susceptibility. To further investigate our previously implicated exon 8 marker, we suggest the need for studies with a high density of polymorphisms be undertaken, with particular focus on markers in LD with the exon 8 marker.
Resumo:
Migraine is a primary headache disorder that involves both genetic and environmental components. Migraine is considered to be a polygenic disorder with a number of susceptibility genes having a minor but nonetheless significant impact on susceptibility. Migraine candidate gene studies have concentrated mainly on genes involved in neurotransmitter pathways, however evidence also exists for a role for alterations in vascular and hormonal function in migraine susceptibility. We present here a mini-review of genetic studies, investigating the potential role of vascular and hormonal gene variants, and discuss how vascular and hormonal dysfunction may impact on migraine susceptibility. We propose that the potential role of vascular and hormonal genes in this disorder warrants further investigation.
Resumo:
Migraine is a common debilitating primary headache disorder with significant mental, physical and social health implications. The brain neurotransmitter 5-hydroxytryptamine (5-HT; serotonin) is involved in nociceptive pathways and has been implicated in the pathophysiology of migraine. With few genetic studies investigating biosynthetic and metabolic enzymes governing the rate of 5-HT activity and their relationship to migraine, it was the objective of this study to assess genetic variants within the human tryptophan hydroxylase (TPH), amino acid decarboxylase (AADC) and monoamine oxidase A (MAOA) genes in migraine susceptibility. This objective was undertaken using a high-throughput DNA pooling experimental design, which proved to be a very accurate, sensitive and specific method of estimating allele frequencies for single nucleotide polymorphism, insertion deletion and variable number tandem repeat loci. Application of DNA pooling to a wide array of genetic loci provides greater scope in the assessment of population-based genetic association study designs. Despite the application of this high-throughput genotyping method, negative results from the two-stage DNA pooling design used to screen loci within the TPH, AADC and MAOA genes did not support their role in migraine susceptibility.
Resumo:
Migraine is a common neurological condition with a complex mode of inheritance. Steroid hormones have long been implicated in migraine, although their role remains unclear. Our investigation considered that genes involved in hormonal pathways may play a role in migraine susceptibility. We therefore investigated the androgen receptor (AR) CAG repeat, and the progesterone receptor (PR) PROGINS insert by cross-sectional association analysis. The results showed no association with the AR CAG repeat in our study group of 275 migraineurs and 275 unrelated controls. Results of the PR PROGINS analysis showed a significant difference in the same cohort, and in an independent follow-up study population of 300 migraineurs and 300 unrelated controls. Analysis of the genotypic risk groups of both populations together indicated that individuals who carried the PROGINS insert were 1.8 times more likely to suffer migraine. Interaction analysis of the PROGINS variant with our previously reported associated ESR1 594A variant showed that individuals who possessed at least one copy of both risk alleles were 3.2 times more likely to suffer migraine. Hence, variants of these steroid hormone receptor genes appear to act synergistically to increase the risk of migraine by a factor of three.
Resumo:
Migraine is a painful and debilitating disorder with a significant genetic component. Steroid hormones, in particular estrogen, have long been considered to play a role in migraine, as variations in hormone levels are associated with migraine onset in many sufferers of the disorder. Steroid hormones mediate their activity via hormone receptors, which have a wide tissue distribution. Estrogen receptors have been localized to the brain in regions considered to be involved in migraine pathogenesis. Hence it is possible that genetic variation in the estrogen receptor gene may play a role in migraine susceptibility. This study thus examined the estrogen receptor 1 (ESRα) gene for a potential role in migraine pathogenesis and susceptibility. A population-based cohort of 224 migraine sufferers and 224 matched controls were genotyped for the G594A polymorphism located in exon 8 of the ESR1 gene. Statistical analysis indicated a significant difference between migraineurs and non-migraineurs in both the allele frequencies (P=0.003) and genotype distributions (P=0.008) in this sample. An independent follow-up study was then undertaken using this marker in an additional population-based cohort of 260 migraine sufferers and 260 matched controls. This resulted in a significant association between the two groups with regard to allele frequencies (P=8×10−6) and genotype distributions (P=4×10−5). Our findings support the hypothesis that genetic variation in hormone receptors, in particular the ESR1 gene, may play a role in migraine.
Resumo:
Migraine is a common complex disorder characterized by severe recurrent headache and usually accompanied by nausea and vomiting. Previous studies in our laboratory have utilized three large multigenerational Australian pedigrees affected with migraine to indicate that the disease is genetically heterogeneous, with linkage results implicating genomic susceptibility regions on both chromosomes 19p and Xq. The present study explores the possibility of a correlation between genetic and clinical heterogeneity in these affected pedigrees. Specifically, the clinical characteristics of migraine including subtype, age of onset, frequency, duration, and disease symptoms were compared between the migraine pedigrees, and gender differences were also assessed. Our exploratory analyses revealed no significant differences in any of the clinical characteristics tested between the chromosome 19-linked family and the two X-linked families. Also, we did not detect any differences in male vs. female clinical features for these pedigrees. In conclusion, migraine is considered to be a clinically and genetically heterogeneous disorder; however, our study provided no conclusive evidence that variation in genomic susceptibility region is related to heterogeneity at the clinical level in these migraine-affected pedigrees.
Resumo:
Migraine is a common complex disorder that affects a large portion of the population and thus incurs a substantial economic burden on society. The disorder is characterized by recurrent headaches that are unilateral and usually accompanied by nausea, vomiting, photophobia, and phonophobia. The range of clinical characteristics is broad and there is evidence of comorbidity with other neurological diseases, complicating both the diagnosis and management of the disorder. Although the class of drugs known as the triptans (serotonin 5-HT1B/1D agonists) has been shown to be effective in treating a significant number of patients with migraine, treatment may in the future be further enhanced by identifying drugs that selectively target molecular mechanisms causing susceptibility to the disease. Genetically, migraine is a complex familial disorder in which the severity and susceptibility of individuals is most likely governed by several genes that may be different among families. Identification of the genomic variants involved in genetic predisposition to migraine should facilitate the development of more effective diagnostic and therapeutic applications. Genetic profiling, combined with our knowledge of therapeutic response to drugs, should enable the development of specific, individually-tailored treatment.
Resumo:
We have identified a migraine locus on chromosome 19p13.3/2 using linkage and association analysis. We isolated 48 single-nucleotide polymorphisms within the locus, of which we genotyped 24 in a Caucasian population comprising 827 unrelated cases and 765 controls. Five single-nucleotide polymorphisms within the insulin receptor gene showed significant association with migraine. This association was independently replicated in a case-control population collected separately. We used experiments with insulin receptor RNA and protein to investigate functionality for the migraine-associated single-nucleotide polymorphisms. We suggest possible functions for the insulin receptor in migraine pathogenesis.
Resumo:
In a previous study we found evidence for an X-linked genetic component for familial typical migraine in two large Australian white pedigrees, designated MF7 and MF14. Significant excess allele sharing was indicated by nonparametric linkage (NPL) analysis using GENEHUNTER (P=0.031 and P=0.012, respectively), with a combined analysis of the two pedigrees showing further increased evidence for linkage, producing a maximum NPL score of 2.87 (P=0.011 ) at DXS 1123 on Xq27. The present study was aimed at refining the localization of the migraine X-chromosomal component by typing additional markers, performing haplotype analysis and applying a more powerful technique in the analysis of linkage data from these two pedigrees. Results from the haplotype analyses, coupled with linkage analyses that produced a peak GENEHUNTER-PLUS LOD* score of 2.388 (P=0.0005), provide compelling evidence for the presence of a migraine susceptibility locus on chromosome Xq24-28.
Resumo:
Migraine is a common complex disorder that shows strong familial aggregation. There is a general increased prevalence of migraine in females compared with males, with recent studies indicating that migraine affects 18% of females compared with 6% of males. This preponderance of females among migraine sufferers coupled with evidence of an increased risk of migraine in first degree relatives of male probands but not in relatives of female probands suggests the possibility of an X-linked dominant gene. We report here the localization of a typical migraine susceptibility locus to the X chromosome. Of three large multigenerational migraine pedigrees two families showed significant excess allele sharing to Xq markers (P = 0.031 and P = 0.012). Overall analysis of data from all three pedigrees gave significant evidence in support of linkage and heterogeneity (HLOD = 3.1). These findings provide conclusive evidence that familial typical migraine is a heterogeneous disorder. We suggest that the localization of a migraine susceptibility locus to the X chromosome could in part explain the increased risk of migraine in relatives of male probands and may be involved in the increased female prevalence of this disorder.
Resumo:
5-Hydroxytryptamine (5HT), commonly known as serotonin, which predominantly serves as an inhibitory neurotransmitter in the brain, has long been implicated in migraine pathophysiology. This study tested an Mspl polymorphism in the human 5HT2A receptor gene (HTR2A) and a closely linked microsatellite marker (D13S126), for linkage and association with common migraine. In the association analyses, no significant differences were found between the migraine and control populations for both the Mspl polymorphism and the D13S126 microsatellite marker. The linkage studies involving three families comprising 36 affected members were analysed using both parametric (FASTLINK) and non-parametric (MFLINK and APM) techniques. Significant close linkage was indicated between the Mspl polymorphism and the D13S126 microsatellite marker at a recombination fraction (θ) of zero (lod score=7.15). Linkage results for the Mspl polymorphism were not very informative in the three families, producing maximum and minimum lod scores of only 0.35 and 0.39 at recombination fractions (θ) of 0.2 and 0.00, respectively. However, linkage analysis between the D13S126 marker and migraine indicated significant non-linkage (lod2) up to a recombination fraction (θ) of 0.028. Results from this study exclude the HTR2A gene, which has been localized to chromosome 13q14-q21, for involvement with common migraine.
Resumo:
Migraine shows strong familial aggregation. However, the number of genes involved in the disorder is unknown and not identified. Nitric oxide is involved in the central processing of pain stimuli and plays an important role in the regulation of basal or stimulated vasodilation. Nitric oxide synthase, which controls the synthesis of nitric oxide, could possibly be a cause, or candidate gene, in migraine etiology. In this study, we detected a polymorphism for endothelial nitric oxide synthase by polymerase chain reaction and tested this for association and linkage to migraine. Results from the study did not show an association of the nitric oxide synthase microsatellite when tested in 91 affected and 85 unaffected individuals. Using the FASTLINK program for parametric linkage analysis, the polymorphism did not show significant linkage to migraine when tested in four migraine pedigrees composed of 116 individuals, 52 affected. Total LOD scores excluded linkage up to 8.5 cM between the nitric oxide synthase polymorphism and migraine. Results using the nonparametric affected pedigree member form of analysis also did not support a role for this gene in migraine etiology.