281 resultados para Micro-element


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A coupled SPH-DEM based two-dimensional (2-D) micro-scale single cell model is developed to predict basic cell-level shrinkage effects of apple parenchyma cells during air drying. In this newly developed drying model, Smoothed Particle Hydrodynamics (SPH) is used to model the low Reynolds Number fluid motions of the cell protoplasm, and a Discrete Element Method (DEM) is employed to simulate the polymer-like cell wall. Simulations results reasonably agree with published experimental drying results on cellular shrinkage properties such as cellular area, diameter and perimeter. These preliminary results indicate that the model is effective for the modelling and simulation of apple parenchyma cells during air drying.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with applying a particle-based approach to simulate the micro-level cellular structural changes of plant cells during drying. The objective of the investigation was to relate the micro-level structural properties such as cell area, diameter and perimeter to the change of moisture content of the cell. Model assumes a simplified cell which consists of two basic components, cell wall and cell fluid. The cell fluid is assumed to be a Newtonian fluid with higher viscosity compared to water and cell wall is assumed to be a visco-elastic solid boundary located around the cell fluid. Cell fluid is modelled with Smoothed Particle Hydrodynamics (SPH) technique and for the cell wall; a Discrete Element Method (DEM) is used. The developed model is two-dimensional, but accounts for three-dimensional physical properties of real plant cells. Drying phenomena is simulated as fluid mass reductions and the model is used to predict the above mentioned structural properties as a function of cell fluid mass. Model predictions are found to be in fairly good agreement with experimental data in literature and the particle-based approach is demonstrated to be suitable for numerical studies of drying related structural deformations. Also a sensitivity analysis is included to demonstrate the influence of key model parameters to model predictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wheel–rail interaction is one of the most important research topics in railway engineering. It involves track impact response, track vibration and track safety. Track structure failures caused by wheel–rail impact forces can lead to significant economic loss for track owners through damage to rails and to the sleepers beneath. Wheel–rail impact forces occur because of imperfections in the wheels or rails such as wheel flats, irregular wheel profiles, rail corrugations and differences in the heights of rails connected at a welded joint. A wheel flat can cause a large dynamic impact force as well as a forced vibration with a high frequency, which can cause damage to the track structure. In the present work, a three-dimensional (3-D) finite element (FE) model for the impact analysis induced by the wheel flat is developed by use of the finite element analysis (FEA) software package ANSYS and validated by another validated simulation. The effect of wheel flats on impact forces is thoroughly investigated. It is found that the presence of a wheel flat will significantly increase the dynamic impact force on both rail and sleeper. The impact force will monotonically increase with the size of wheel flats. The relationships between the impact force and the wheel flat size are explored from this finite element analysis and they are important for track engineers to improve their understanding of the design and maintenance of the track system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Debugging control software for Micro Aerial Vehicles (MAV) can be risky out of the simulator, especially with professional drones that might harm people around or result in a high bill after a crash. We have designed a framework that enables a software application to communicate with multiple MAVs from a single unified interface. In this way, visual controllers can be first tested on a low-cost harmless MAV and, after safety is guaranteed, they can be moved to the production MAV at no additional cost. The framework is based on a distributed architecture over a network. This allows multiple configurations, like drone swarms or parallel processing of drones' video streams. Live tests have been performed and the results show comparatively low additional communication delays, while adding new functionalities and flexibility. This implementation is open-source and can be downloaded from github.com/uavster/mavwork

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Preliminary data is presented on a detailed statistical analysis of k-factor determination for a single class of minerals (amphiboles) which contain a wide range of element concentrations. These amphiboles are homogeneous, contain few (if any) subsolidus microstructures and can be readily prepared for thin film analysis. In previous studies, element loss during the period of irradiation has been assumed negligible for the determination of k-factors. Since this phenomena may be significant for certain mineral systems, we also report on the effect of temperature on k-factor determination for various elements using small probe sizes (approx.20 nm).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Topic recommendation can help users deal with the information overload issue in micro-blogging communities. This paper proposes to use the implicit information network formed by the multiple relationships among users, topics and micro-blogs, and the temporal information of micro-blogs to find semantically and temporally relevant topics of each topic, and to profile users' time-drifting topic interests. The Content based, Nearest Neighborhood based and Matrix Factorization models are used to make personalized recommendations. The effectiveness of the proposed approaches is demonstrated in the experiments conducted on a real world dataset that collected from Twitter.com.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shoulder joint is a complex integration of soft and hard tissues. It plays an important role in performing daily activities and can be considered as a perfect compromise between mobility and stability. However, shoulder is vulnerable to complications such as dislocations and osteoarthritis. Finite element (FE) models have been developed to understand shoulder injury mechanisms, implications of disease on shoulder complex and in assessing the quality of shoulder implants. Further, although few, Finite element shoulder models have also been utilized to answer important clinical questions such as the difference between a normal and osteoarthritic shoulder joint. However, due to the absence of experimental validation, it is questionable whether the constitutive models applied in these FE models are adequate to represent mechanical behaviors of shoulder elements (Cartilages, Ligaments, Muscles etc), therefore the confidence of using current models in answering clinically relevant question. The main objective of this review is to critically evaluate the existing FE shoulder models that have been used to investigate clinical problems. Due concern is given to check the adequacy of representative constitutive models of shoulder elements in drawing clinically relevant conclusion. Suggestions have been given to improve the existing shoulder models by inclusion of adequate constitutive models for shoulder elements to confidently answer clinically relevant questions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a hybrid smoothed finite element method (H-SFEM) is developed for solid mechanics problems by combining techniques of finite element method (FEM) and Node-based smoothed finite element method (NS-FEM) using a triangular mesh. A parameter is equipped into H-SFEM, and the strain field is further assumed to be the weighted average between compatible stains from FEM and smoothed strains from NS-FEM. We prove theoretically that the strain energy obtained from the H-SFEM solution lies in between those from the compatible FEM solution and the NS-FEM solution, which guarantees the convergence of H-SFEM. Intensive numerical studies are conducted to verify these theoretical results and show that (1) the upper and lower bound solutions can always be obtained by adjusting ; (2) there exists a preferable at which the H-SFEM can produce the ultrasonic accurate solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are many continuum mechanical models have been developed such as liquid drop models, solid models, and so on for single living cell biomechanics studies. However, these models do not give a fully approach to exhibit a clear understanding of the behaviour of single living cells such as swelling behaviour, drag effect, etc. Hence, the porohyperelastic (PHE) model which can capture those aspects would be a good candidature to study cells behaviour (e.g. chondrocytes in this study). In this research, an FEM model of single chondrocyte cell will be developed by using this PHE model to simulate Atomic Force Microscopy (AFM) experimental results with the variation of strain rate. This material model will be compared with viscoelastic model to demonstrate the advantages of PHE model. The results have shown that the maximum value of force applied of PHE model is lower at lower strain rates. This is because the mobile fluid does not have enough time to exude in case of very high strain rate and also due to the lower permeability of the membrane than that of the protoplasm of chondrocyte. This behavior is barely observed in viscoelastic model. Thus, PHE model is the better model for cell biomechanics studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Determining the properties and integrity of subchondral bone in the developmental stages of osteoarthritis, especially in a form that can facilitate real-time characterization for diagnostic and decision-making purposes, is still a matter for research and development. This paper presents relationships between near infrared absorption spectra and properties of subchondral bone obtained from 3 models of osteoarthritic degeneration induced in laboratory rats via: (i) menisectomy (MSX); (ii) anterior cruciate ligament transaction (ACL); and (iii) intra-articular injection of mono-ido-acetate (1 mg) (MIA), in the right knee joint, with 12 rats per model group (N = 36). After 8 weeks, the animals were sacrificed and knee joints were collected. A custom-made diffuse reflectance NIR probe of diameter 5 mm was placed on the tibial surface and spectral data were acquired from each specimen in the wavenumber range 4000–12 500 cm− 1. After spectral acquisition, micro computed tomography (micro-CT) was performed on the samples and subchondral bone parameters namely: bone volume (BV) and bone mineral density (BMD) were extracted from the micro-CT data. Statistical correlation was then conducted between these parameters and regions of the near infrared spectra using multivariate techniques including principal component analysis (PCA), discriminant analysis (DA), and partial least squares (PLS) regression. Statistically significant linear correlations were found between the near infrared absorption spectra and subchondral bone BMD (R2 = 98.84%) and BV (R2 = 97.87%). In conclusion, near infrared spectroscopic probing can be used to detect, qualify and quantify changes in the composition of the subchondral bone, and could potentially assist in distinguishing healthy from OA bone as demonstrated with our laboratory rat models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene, one of the allotropes (diamond, carbon nanotube, and fullerene) of element carbon, is a monolayer of honeycomb lattice of carbon atoms, which was discovered in 2004. The Nobel Prize in Physics 2010 was awarded to Andre Geim and Konstantin Novoselov for their ground breaking work on the two-dimensional (2D) graphene [1]. Since its discovery, the research communities have shown a lot of interest in this novel material owing to its intriguing electrical, mechanical and thermal properties. It has been confirmed that grapheme possesses very peculiar electrical properties such as anomalous quantum hall effect, and high electron mobility at room temperature (250000 cm2/Vs). Graphene also has exceptional mechanical properties. It is one of the stiffest (modulus ~1 TPa) and strongest (strength ~100 GPa) materials. In addition, it has exceptional thermal conductivity (5000 Wm-1K-1). Due to these exceptional properties, graphene has demonstrated its potential for broad applications in micro and nano devices, various sensors, electrodes, solar cells and energy storage devices and nanocomposites. In particular, the excellent mechanical properties of graphene make it more attractive for development next generation nanocomposites and hybrid materials...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effective digital human model (DHM) simulation of automotive driver packaging ergonomics, safety and comfort depends on accurate modelling of occupant posture, which is strongly related to the mechanical interaction between human body soft tissue and flexible seat components. This paper presents a finite-element study simulating the deflection of seat cushion foam and supportive seat structures, as well as human buttock and thigh soft tissue when seated. The three-dimensional data used for modelling thigh and buttock geometry were taken on one 95th percentile male subject, representing the bivariate percentiles of the combined hip breadth (seated) and buttock-to-knee length distributions of a selected Australian and US population. A thigh-buttock surface shell based on this data was generated for the analytic model. A 6mm neoprene layer was offset from the shell to account for the compression of body tissue expected through sitting in a seat. The thigh-buttock model is therefore made of two layers, covering thin to moderate thigh and buttock proportions, but not more fleshy sizes. To replicate the effects of skin and fat, the neoprene rubber layer was modelled as a hyperelastic material with viscoelastic behaviour in a Neo-Hookean material model. Finite element (FE) analysis was performed in ANSYS V13 WB (Canonsburg, USA). It is hypothesized that the presented FE simulation delivers a valid result, compared to a standard SAE physical test and the real phenomenon of human-seat indentation. The analytical model is based on the CAD assembly of a Ford Territory seat. The optimized seat frame, suspension and foam pad CAD data were transformed and meshed into FE models and indented by the two layer, soft surface human FE model. Converging results with the least computational effort were achieved for a bonded connection between cushion and seat base as well as cushion and suspension, no separation between neoprene and indenter shell and a frictional connection between cushion pad and neoprene. The result is compared to a previous simulation of an indentation with a hard shell human finite-element model of equal geometry, and to the physical indentation result, which is approached with very high fidelity. We conclude that (a) SAE composite buttock form indentation of a suspended seat cushion can be validly simulated in a FE model of merely similar geometry, but using a two-layer hard/soft structure. (b) Human-seat indentation of a suspended seat cushion can be validly simulated with a simplified human buttock-thigh model for a selected anthropomorphism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-ray microtomography (micro-CT) with micron resolution enables new ways of characterizing microstructures and opens pathways for forward calculations of multiscale rock properties. A quantitative characterization of the microstructure is the first step in this challenge. We developed a new approach to extract scale-dependent characteristics of porosity, percolation, and anisotropic permeability from 3-D microstructural models of rocks. The Hoshen-Kopelman algorithm of percolation theory is employed for a standard percolation analysis. The anisotropy of permeability is calculated by means of the star volume distribution approach. The local porosity distribution and local percolation probability are obtained by using the local porosity theory. Additionally, the local anisotropy distribution is defined and analyzed through two empirical probability density functions, the isotropy index and the elongation index. For such a high-resolution data set, the typical data sizes of the CT images are on the order of gigabytes to tens of gigabytes; thus an extremely large number of calculations are required. To resolve this large memory problem parallelization in OpenMP was used to optimally harness the shared memory infrastructure on cache coherent Non-Uniform Memory Access architecture machines such as the iVEC SGI Altix 3700Bx2 Supercomputer. We see adequate visualization of the results as an important element in this first pioneering study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a rigorous validation of the analytical Amadei solution for the stress concentration around an arbitrarily orientated borehole in general anisotropic elastic media. First, we revisit the theoretical framework of the Amadei solution and present analytical insights that show that the solution does indeed contain all special cases of symmetry, contrary to previous understanding, provided that the reduced strain coefficients b11 and b55 are not equal. It is shown from theoretical considerations and published experimental data that the b11 and b55 are not equal for realistic rocks. Second, we develop a 3D finite element elastic model within a hybrid analytical–numerical workflow that circumvents the need to rebuild and remesh the model for every borehole and material orientation. Third, we show that the borehole stresses computed from the numerical model and the analytical solution match almost perfectly for different borehole orientations (vertical, deviated and horizontal) and for several cases involving isotropic, transverse isotropic and orthorhombic symmetries. It is concluded that the analytical Amadei solution is valid with no restriction on the borehole orientation or the symmetry of the elastic anisotropy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Controlled drug delivery is a key topic in modern pharmacotherapy, where controlled drug delivery devices are required to prolong the period of release, maintain a constant release rate, or release the drug with a predetermined release profile. In the pharmaceutical industry, the development process of a controlled drug delivery device may be facilitated enormously by the mathematical modelling of drug release mechanisms, directly decreasing the number of necessary experiments. Such mathematical modelling is difficult because several mechanisms are involved during the drug release process. The main drug release mechanisms of a controlled release device are based on the device’s physiochemical properties, and include diffusion, swelling and erosion. In this thesis, four controlled drug delivery models are investigated. These four models selectively involve the solvent penetration into the polymeric device, the swelling of the polymer, the polymer erosion and the drug diffusion out of the device but all share two common key features. The first is that the solvent penetration into the polymer causes the transition of the polymer from a glassy state into a rubbery state. The interface between the two states of the polymer is modelled as a moving boundary and the speed of this interface is governed by a kinetic law. The second feature is that drug diffusion only happens in the rubbery region of the polymer, with a nonlinear diffusion coefficient which is dependent on the concentration of solvent. These models are analysed by using both formal asymptotics and numerical computation, where front-fixing methods and the method of lines with finite difference approximations are used to solve these models numerically. This numerical scheme is conservative, accurate and easily implemented to the moving boundary problems and is thoroughly explained in Section 3.2. From the small time asymptotic analysis in Sections 5.3.1, 6.3.1 and 7.2.1, these models exhibit the non-Fickian behaviour referred to as Case II diffusion, and an initial constant rate of drug release which is appealing to the pharmaceutical industry because this indicates zeroorder release. The numerical results of the models qualitatively confirms the experimental behaviour identified in the literature. The knowledge obtained from investigating these models can help to develop more complex multi-layered drug delivery devices in order to achieve sophisticated drug release profiles. A multi-layer matrix tablet, which consists of a number of polymer layers designed to provide sustainable and constant drug release or bimodal drug release, is also discussed in this research. The moving boundary problem describing the solvent penetration into the polymer also arises in melting and freezing problems which have been modelled as the classical onephase Stefan problem. The classical one-phase Stefan problem has unrealistic singularities existed in the problem at the complete melting time. Hence we investigate the effect of including the kinetic undercooling to the melting problem and this problem is called the one-phase Stefan problem with kinetic undercooling. Interestingly we discover the unrealistic singularities existed in the classical one-phase Stefan problem at the complete melting time are regularised and also find out the small time behaviour of the one-phase Stefan problem with kinetic undercooling is different to the classical one-phase Stefan problem from the small time asymptotic analysis in Section 3.3. In the case of melting very small particles, it is known that surface tension effects are important. The effect of including the surface tension to the melting problem for nanoparticles (no kinetic undercooling) has been investigated in the past, however the one-phase Stefan problem with surface tension exhibits finite-time blow-up. Therefore we investigate the effect of including both the surface tension and kinetic undercooling to the melting problem for nanoparticles and find out the the solution continues to exist until complete melting. The investigation of including kinetic undercooling and surface tension to the melting problems reveals more insight into the regularisations of unphysical singularities in the classical one-phase Stefan problem. This investigation gives a better understanding of melting a particle, and contributes to the current body of knowledge related to melting and freezing due to heat conduction.