179 resultados para Metal matrix composites
Resumo:
In the context of increasing demand for potable water and the depletion of water resources, stormwater is a logical alternative. However, stormwater contains pollutants, among which metals are of particular interest due to their toxicity and persistence in the environment. Hence, it is imperative to remove toxic metals in stormwater to the levels prescribed by drinking water guidelines for potable use. Consequently, various techniques have been proposed, among which sorption using low cost sorbents is economically viable and environmentally benign in comparison to other techniques. However, sorbents show affinity towards certain toxic metals, which results in poor removal of other toxic metals. It was hypothesised in this study that a mixture of sorbents that have different metal affinity patterns can be used for the efficient removal of a range of toxic metals commonly found in stormwater. The performance of six sorbents in the sorption of Al, Cr, Cu, Pb, Ni, Zn and Cd, which are the toxic metals commonly found in urban stormwater, was investigated to select suitable sorbents for creating the mixtures. For this purpose, a multi criteria analytical protocol was developed using the decision making methods: PROMETHEE (Preference Ranking Organisation METHod for Enrichment Evaluations) and GAIA (Graphical Analysis for Interactive Assistance). Zeolite and seaweed were selected for the creation of trial mixtures based on their metal affinity pattern and the performance on predetermined selection criteria. The metal sorption mechanisms employed by seaweed and zeolite were defined using kinetics, isotherm and thermodynamics parameters, which were determined using the batch sorption experiments. Additionally, the kinetics rate-limiting steps were identified using an innovative approach using GAIA and Spearman correlation techniques developed as part of the study, to overcome the limitation in conventional graphical methods in predicting the degree of contribution of each kinetics step in limiting the overall metal removal rate. The sorption kinetics of zeolite was found to be primarily limited by intraparticle diffusion followed by the sorption reaction steps, which were governed mainly by the hydrated ionic diameter of metals. The isotherm study indicated that the metal sorption mechanism of zeolite was primarily of a physical nature. The thermodynamics study confirmed that the energetically favourable nature of sorption increased in the order of Zn < Cu < Cd < Ni < Pb < Cr < Al, which is in agreement with metal sorption affinity of zeolite. Hence, sorption thermodynamics has an influence on the metal sorption affinity of zeolite. On the other hand, the primary kinetics rate-limiting step of seaweed was the sorption reaction process followed by intraparticle diffusion. The boundary layer diffusion was also found to limit the metal sorption kinetics at low concentration. According to the sorption isotherm study, Cd, Pb, Cr and Al were sorbed by seaweed via ion exchange, whilst sorption of Ni occurred via physisorption. Furthermore, ionic bonding is responsible for the sorption of Zn. The thermodynamics study confirmed that sorption by seaweed was energetically favourable in the order of Zn < Cu < Cd < Cr . Al < Pb < Ni. However, this did not agree with the affinity series derived for seaweed suggesting a limited influence of sorption thermodynamics on metal affinity for seaweed. The investigation of zeolite-seaweed mixtures indicated that mixing sorbents have an effect on the kinetics rates and the sorption affinity. Additionally, the theoretical relationships were derived to predict the boundary layer diffusion rate, intraparticle diffusion rate, the sorption reaction rate and the enthalpy of mixtures based on that of individual sorbents. In general, low coefficient of determination (R2) for the relationships between theoretical and experimental data indicated that the relationships were not statistically significant. This was attributed to the heterogeneity of the properties of sorbents. Nevertheless, in relative terms, the intraparticle diffusion rate, sorption reaction rate and enthalpy of sorption had higher R2 values than the boundary layer diffusion rate suggesting that there was some relationship between the former set of parameters of mixtures and that of sorbents. The mixture, which contained 80% of zeolite and 20% of seaweed, showed similar affinity for the sorption of Cu, Ni, Cd, Cr and Al, which was attributed to approximately similar sorption enthalpy of the metal ions. Therefore, it was concluded that the seaweed-zeolite mixture can be used to obtain the same affinity for various metals present in a multi metal system provided the metal ions have similar enthalpy during sorption by the mixture.
Influence of organic matter in road deposited particulates in heavy metal accumulation and transport
Resumo:
The research study discussed in the paper investigated the influence of organic matter on heavy metal adsorption for different particle size ranges of build-up solids. Samples collected from road surfaces were assessed for organic matter content, mineral composition, particle size distribution and effective cation exchange capacity. It was found that the organic matter plays a key role in >75µm particles in the adsorption of Zinc, Lead, Nickel and Copper, which are generated by traffic activities. Clay forming minerals and metal oxides of Iron, Aluminium and Manganese was found to be important for heavy metal adsorption to <75µm particles. It was also found that heavy metals adsorbed to organic matter are strongly bound to particles and these metal ions will not be bio-available if the chemical quality of the media remains stable.
Resumo:
Animal models typically require a known genetic pedigree to estimate quantitative genetic parameters. Here we test whether animal models can alternatively be based on estimates of relatedness derived entirely from molecular marker data. Our case study is the morphology of a wild bird population, for which we report estimates of the genetic variance-covariance matrices (G) of six morphological traits using three methods: the traditional animal model; a molecular marker-based approach to estimate heritability based on Ritland's pairwise regression method; and a new approach using a molecular genealogy arranged in a relatedness matrix (R) to replace the pedigree in an animal model. Using the traditional animal model, we found significant genetic variance for all six traits and positive genetic covariance among traits. The pairwise regression method did not return reliable estimates of quantitative genetic parameters in this population, with estimates of genetic variance and covariance typically being very small or negative. In contrast, we found mixed evidence for the use of the pedigree-free animal model. Similar to the pairwise regression method, the pedigree-free approach performed poorly when the full-rank R matrix based on the molecular genealogy was employed. However, performance improved substantially when we reduced the dimensionality of the R matrix in order to maximize the signal to noise ratio. Using reduced-rank R matrices generated estimates of genetic variance that were much closer to those from the traditional model. Nevertheless, this method was less reliable at estimating covariances, which were often estimated to be negative. Taken together, these results suggest that pedigree-free animal models can recover quantitative genetic information, although the signal remains relatively weak. It remains to be determined whether this problem can be overcome by the use of a more powerful battery of molecular markers and improved methods for reconstructing genealogies.
Resumo:
The elastic properties of 1D nanostructures such as nanowires are often measured experimentally through actuation of the nanowire at its resonance frequency, and then relating the resonance frequency to the elastic stiffness using elementary beam theory. In the present work, we utilize large scale molecular dynamics simulations to report a novel beat phenomenon in [110]oriented Ag nanowires. The beat phenomenon is found to arise from the asymmetry of the lattice spacing in the orthogonal elementary directions of the [110] nanowire, i.e. the [-110] and [001] directions, which results in two different principal moments of inertia. Because of this, actuations imposed along any other direction are found to decompose into two orthogonal vibrational components based on the actuation angle relative to these two elementary directions, with this phenomenon being generalizable to <110> FCC nanowires of different materials (Cu, Au, Ni, Pd and Pt). The beat phenomenon is explained using a discrete moment of inertia model based on the hard sphere assumption, the model is utilized to show that surface effects enhance the beat phenomenon, while the effect is reduced with increasing nanowires cross-sectional size or aspect ratio. Most importantly, due to the existence of the beat phenomena, we demonstrate that in resonance experiments only a single frequency component is expected to be observed, particularly when the damping ratio is relatively large or very small. Furthermore, for a large range of actuation angles, the lower frequency is more likely to be detected than the higher one, which implies that experimental predictions of Young’s modulus obtained from resonance may in fact be under predictions. The present study therefore has significant implications for experimental interpretations of Young’s modulus as obtained via resonance testing.
Resumo:
Having personal that works in projects but belongs to a functional organization is the way that many companies organized their labor force today. Previous research shows that this implies management contradictions and ambiguities between functional manager and project manager; there are unresolved struggles between these two roles in terms of power, accountability, authority and legitimacy. With this paper we aim to analyze those struggles based on previous research and to generate working hypotheses. We first provide a review of the different matrix organizations focusing on the relation between the functional manager and the project manager. We then review the literature concerning temporary organizations and projects as temporary organizations. We conclude by integrating the findings of these perspectives and by identifying working hypotheses and areas for further research.
Resumo:
With saturation within domestic marketplaces and increased growth opportunities overseas, many financial service providers are investing in foreign markets. However, cultural attitudes towards money can present market entry challenges to financial service providers. The industry would therefore benefit from a strategic model that helps to align financial marketing mixes with the cultural dimensions of a foreign market. The Financial Services Cultural Orientation (FSCO) Matrix has therefore been designed, with three cultural dimensions identified which influence preference for financial products; preference for cash, aversion to debt and savings orientation. Based on a combination of these dimensions and their relative strength within a culture, eight different consumer segments for financial products are identified, and marketing strategies for each consumer segment are then proposed. Three cultural clusters from the GLOBE Project House et al. (2002) are used to highlight possible geographic markets for each of these consumer segments. In particular, this paper focuses on GLOBE’s Confucian Asia, Southern Asia and Anglo cultural clusters, as these clusters represent the most well established financial markets in the world and the fastest growing financial markets for the future. The FSCO Matrix provides the financial services industry with an innovative and practical tool for addressing cross-cultural challenges and developing successful marketing strategies for entry into foreign markets.
Resumo:
The study of matrices of rare Type 4 carbonaceous chondrites can reveal important information on parent body rnetamorp~ic processes and provide a comparison with processes on parent bodies of ordinary chc-idrites. Reflectance spectra (Tholen, 1984) from the two largest asteroids in the asteroid belt, Ceres and Pallas, suggest that they may be metamorphosed carbonaceous chondrites. These two asteroids constitute - onethird of the mass in the asteroid belt implying that type 4-6 carbonaceous chondrites are poorly represented in the meteorite collection and may be of considerable importance. The matrix of the C4 chondrite Karoonda has been investigated using a JEOL 2000FX analytical electron microscope (AEM) with an attached Tracor-Northem TN5500 energy dispersive spectrometer (EDS). In previous studies (Scott and Taylor, 1985; Fitzgerald, 1979; Van Schmus, 1969), the petrography of the Karoonda matrix has been described as consisting largely of coarse-grained (50-200 urn in size) olivine and plagioclase (20-100 um in size), associated with micrometer sized magnetite and rare sulphides. AEM observations on matrix show that in addition to these large grains, there is a significant fraction (10 vol%) of interstitial fine grained phases « 5 urn). The mineralogy of these fine-grained phases differs in some respects from that of the coarser-grained matrix identified by optical and SEM techniques (Scott and Taylor, 1985; Fitzgerald, 1979; Van Schmus, 1969). I~ particular crystals of two compositionally distinct pyroxenes « 2 urn in size) have been identified which have not been previously observed in Karoonda by other analytical techniques. Thin film microanalyses (Mackinnon et al., 1986) of these two pyroxenes indicate compositions consistent with augite and low-Ca pyroxene (- Fs27). Fine-grained anhedral olivine « 2 urn size) is the most abundant phase with composition -Fa29' This composition is essentially indistinguishable from that determined for coarser-grained matrix olivines using an electron microprobe (Scott and Taylor, 1985; Fitzgerald, 1979; Van Schmus, 1969). All olivines are associated with subhedral magnetites « 1 urn size) which contain significant Cr (- 2%) and Al (- 1%) as was also noted for larger sized Karoonda magnetites by Delaney et al. (1985). It has recently been suggested (Burgess et al., 1987) on the basis of sulphur release profiles for S-isotope analyses of Karoonda that CaS04 (anhydrite) may be present. However, no sulphate phase has, as yet, been identified in the matrix of Karoonda. Low magnification contrast images suggest that Karoonda may have a significant porosity within the fine-grained matrix fraction. Most crystals are anhedral and do not show evidence for significant compaction. Individual grains often show single point contact with other grains which result in abundant intergranular voids. These voids frequently contain epoxy which was used as part of the specimen preparation procedure due to the friable nature of the bulk sample.
Resumo:
Reliable approaches for predicting pollutant build-up are essential for accurate urban stormwater quality modelling. Based on the in-depth investigation of metal build-up on residential road surfaces, this paper presents empirical models for predicting metal loads on these surfaces. The study investigated metals commonly present in the urban environment. Analysis undertaken found that the build-up process for metals primarily originating from anthropogenic (copper and zinc) and geogenic (aluminium, calcium, iron and manganese) sources were different. Chromium and nickel were below detection limits. Lead was primarily associated with geogenic sources, but also exhibited a significant relationship with anthropogenic sources. The empirical prediction models developed were validated using an independent data set and found to have relative prediction errors of 12-50%, which is generally acceptable for complex systems such as urban road surfaces. Also, the predicted values were very close to the observed values and well within 95% prediction interval.
Resumo:
The effects of electron irradiation on NiO-containing solid solution systems are described. Partially hydrated NiO solid solutions, e. g. , NiO-MgO, undergo surface reduction to Ni metal after examination by TEM. This surface layer results in the formation of Moire interference patterns.
Resumo:
High resolution transmission electron microscopy of the Mighei carbonaceous chondrite matrix has revealed the presence of a new mixed layer structure material. This mixed-layer material consists of an ordered arrangement of serpentine-type (S) and brucite-type (B) layers in the sequence ... SBBSBB. ... Electron diffraction and imaging techniques show that the basal periodicity is ~ 17 Å. Discrete crystals of SBB-type material are typically curved, of small size (<1 μm) and show structural variations similar to the serpentine group minerals. Mixed-layer material also occurs in association with planar serpentine. Characteristics of SBB-type material are not consistent with known terrestrial mixed-layer clay minerals. Evidence for formation by a condensation event or by subsequent alteration of preexisting material is not yet apparent. © 1982.
Resumo:
CARBONACEOUS chondrites provide valuable information as they are the least altered examples of early Solar System material1. The matrix constitutes a major proportion of carbonaceous chondrites. Despite many past attempts, unambiguous identification of the minerals in the matrix has not been totally successful2. This is mainly due to the extremely fine-grained nature of the matrix phases. Recently, progress in the characterisation of these phases has been made by electron diffraction studies3,4. We present here the direct observation, by high resolution imaging, of phases in carbonaceous chondrite matrices. We used ion-thinned sections from the Murchison C2(M) meteorite for transmission electron microscopy. The Murchison matrix contains both ordered and disordered inter-growths of serpentine-like and brucite-like layers. Such mixed-layer structures are new types of layer silicates. © 1979 Nature Publishing Group.
Resumo:
A suite of new materials, based on chemical modification of kaolins, has been successfully prepared via manipulation of the kaolin structure and subsequent intercalation by CaCl2 and MgCl2. A standard kaolinite(KGa-1)and a commercially available halloysite (New Zealand china clay) were used for this study. The kaolins are given several cycles of intercalation and deintercalation using a common intercalant such as potassium acetate. The number of cycles given depends on the type of kaolin. After this treatment, both kaolinite and halloysite hydrate show considerable broadening of the (00l) reflections which indicate extensive exfoliation of the layers. In the case of kaolinite, exfoliated layers roll to form tubes similar to proper halloysite. Kaolins modified by the above treatment readily intercalate MgCl2 and CaCl2 from saturated solutions of these salts. On intercalation with CaCl2 and MgCl2, kaolinite layers expand to 10A and 9.8A, and those of halloysite to 12.8A and 15.5A, respectively. To our knowledge, this is the first report of successful intercalation of alkaline-earth halides by kaolins.
Resumo:
Transition metal-free magnetism and half-metallicity recently has been the subject of intense research activity due to its potential in spintronics application. Here we, for the first time, demonstrate via density functional theory that the most recently experimentally realized graphitic carbon nitride (g-C4N3) displays a ferromagnetic ground state. Furthermore, this novel material is predicted to possess an intrinsic half-metallicity never reported to date. Our results highlight a new promising material toward realistic metal-free spintronics application.