247 resultados para Maximal unipotent subgroups
Resumo:
OBJECTIVES: Four randomized phase II/III trials investigated the addition of cetuximab to platinum-based, first-line chemotherapy in patients with advanced non-small cell lung cancer (NSCLC). A meta-analysis was performed to examine the benefit/risk ratio for the addition of cetuximab to chemotherapy. MATERIALS AND METHODS: The meta-analysis included individual patient efficacy data from 2018 patients and individual patient safety data from 1970 patients comprising respectively the combined intention-to-treat and safety populations of the four trials. The effect of adding cetuximab to chemotherapy was measured by hazard ratios (HRs) obtained using a Cox proportional hazards model and odds ratios calculated by logistic regression. Survival rates at 1 year were calculated. All applied models were stratified by trial. Tests on heterogeneity of treatment effects across the trials and sensitivity analyses were performed for all endpoints. RESULTS: The meta-analysis demonstrated that the addition of cetuximab to chemotherapy significantly improved overall survival (HR 0.88, p=0.009, median 10.3 vs 9.4 months), progression-free survival (HR 0.90, p=0.045, median 4.7 vs 4.5 months) and response (odds ratio 1.46, p<0.001, overall response rate 32.2% vs 24.4%) compared with chemotherapy alone. The safety profile of chemotherapy plus cetuximab in the meta-analysis population was confirmed as manageable. Neither trials nor patient subgroups defined by key baseline characteristics showed significant heterogeneity for any endpoint. CONCLUSION: The addition of cetuximab to platinum-based, first-line chemotherapy for advanced NSCLC significantly improved outcome for all efficacy endpoints with an acceptable safety profile, indicating a favorable benefit/risk ratio.
Resumo:
Purpose This work introduces the concept of very small field size. Output factor (OPF) measurements at these field sizes require extremely careful experimental methodology including the measurement of dosimetric field size at the same time as each OPF measurement. Two quantifiable scientific definitions of the threshold of very small field size are presented. Methods A practical definition was established by quantifying the effect that a 1 mm error in field size or detector position had on OPFs, and setting acceptable uncertainties on OPF at 1%. Alternatively, for a theoretical definition of very small field size, the OPFs were separated into additional factors to investigate the specific effects of lateral electronic disequilibrium, photon scatter in the phantom and source occlusion. The dominant effect was established and formed the basis of a theoretical definition of very small fields. Each factor was obtained using Monte Carlo simulations of a Varian iX linear accelerator for various square field sizes of side length from 4 mm to 100 mm, using a nominal photon energy of 6 MV. Results According to the practical definition established in this project, field sizes < 15 mm were considered to be very small for 6 MV beams for maximal field size uncertainties of 1 mm. If the acceptable uncertainty in the OPF was increased from 1.0 % to 2.0 %, or field size uncertainties are 0.5 mm, field sizes < 12 mm were considered to be very small. Lateral electronic disequilibrium in the phantom was the dominant cause of change in OPF at very small field sizes. Thus the theoretical definition of very small field size coincided to the field size at which lateral electronic disequilibrium clearly caused a greater change in OPF than any other effects. This was found to occur at field sizes < 12 mm. Source occlusion also caused a large change in OPF for field sizes < 8 mm. Based on the results of this study, field sizes < 12 mm were considered to be theoretically very small for 6 MV beams. Conclusions Extremely careful experimental methodology including the measurement of dosimetric field size at the same time as output factor measurement for each field size setting and also very precise detector alignment is required at field sizes at least < 12 mm and more conservatively < 15 mm for 6 MV beams. These recommendations should be applied in addition to all the usual considerations for small field dosimetry, including careful detector selection.
Resumo:
A number of observations have suggested that brain derived neurotrophic factor (BDNF) plays a role in migraine pathophysiology. This study investigates whether variants in the BDNF gene are associated with migraine in an Australian case-control population. Background. Brain derived neurotrophic factor (BDNF) has an important role in neural growth, development and survival in the central nervous system and is an important modulator of central and peripheral pain responses. Variants in BDNF, in particular the functional Val66Met polymorphism (rs6265), have been found to be associated with a number of psychiatric disorders, cognitive function and obesity. As BDNF has been found to be differentially expressed in a number of aspects related to migraine, we tested for association between single nucleotide polymorphisms (SNPs) in BDNF and migraine. Methods. Five SNPs in the BDNF locus (rs1519480, rs6265, rs712507, rs2049046 and rs12273363) were genotyped initially in a cohort of 277 migraine cases, including 172 diagnosed with migraine with aura (MA) and 105 with migraine without aura (MO), and 277 age- and sex-matched controls. Three of these SNPs (rs6265, rs2049046 and rs12273363) were subsequently genotyped in a second cohort of 580 migraineurs, including 473 diagnosed with MA and 105 with O, and 580 matched controls. Results. – BDNF SNPs rs1519480, rs6265, rs712507 and rs12273363 were not significantly associated with migraine. However, rs2049046 showed a significant association with migraine, and in particular, MA in the first cohort. In the second cohort, although an increase in the rs2049046 T-allele frequency was observed in migraine cases, and in both MA and MO subgroups, it was not significantly different from controls. Analysis of data combined from both cohorts for rs2049046 showed significant differences in the genotypic and allelic distributions for this marker in both migraine and the MA sub-group. Conclusion. This study confirmed previous studies that the functional BDNF SNP rs6265 (Val66Met) is not associated with migraine. However, we found that rs2049046, which resides at the 5’ end of 3 one the BDNF transcripts, may be associated with migraine, suggesting that further investigations of this SNP may be warranted.
Resumo:
A known limitation of the Probability Ranking Principle (PRP) is that it does not cater for dependence between documents. Recently, the Quantum Probability Ranking Principle (QPRP) has been proposed, which implicitly captures dependencies between documents through “quantum interference”. This paper explores whether this new ranking principle leads to improved performance for subtopic retrieval, where novelty and diversity is required. In a thorough empirical investigation, models based on the PRP, as well as other recently proposed ranking strategies for subtopic retrieval (i.e. Maximal Marginal Relevance (MMR) and Portfolio Theory(PT)), are compared against the QPRP. On the given task, it is shown that the QPRP outperforms these other ranking strategies. And unlike MMR and PT, one of the main advantages of the QPRP is that no parameter estimation/tuning is required; making the QPRP both simple and effective. This research demonstrates that the application of quantum theory to problems within information retrieval can lead to significant improvements.
Resumo:
Ranking documents according to the Probability Ranking Principle has been theoretically shown to guarantee optimal retrieval effectiveness in tasks such as ad hoc document retrieval. This ranking strategy assumes independence among document relevance assessments. This assumption, however, often does not hold, for example in the scenarios where redundancy in retrieved documents is of major concern, as it is the case in the sub–topic retrieval task. In this chapter, we propose a new ranking strategy for sub–topic retrieval that builds upon the interdependent document relevance and topic–oriented models. With respect to the topic– oriented model, we investigate both static and dynamic clustering techniques, aiming to group topically similar documents. Evidence from clusters is then combined with information about document dependencies to form a new document ranking. We compare and contrast the proposed method against state–of–the–art approaches, such as Maximal Marginal Relevance, Portfolio Theory for Information Retrieval, and standard cluster–based diversification strategies. The empirical investigation is performed on the ImageCLEF 2009 Photo Retrieval collection, where images are assessed with respect to sub–topics of a more general query topic. The experimental results show that our approaches outperform the state–of–the–art strategies with respect to a number of diversity measures.
Resumo:
In this thesis we investigate the use of quantum probability theory for ranking documents. Quantum probability theory is used to estimate the probability of relevance of a document given a user's query. We posit that quantum probability theory can lead to a better estimation of the probability of a document being relevant to a user's query than the common approach, i. e. the Probability Ranking Principle (PRP), which is based upon Kolmogorovian probability theory. Following our hypothesis, we formulate an analogy between the document retrieval scenario and a physical scenario, that of the double slit experiment. Through the analogy, we propose a novel ranking approach, the quantum probability ranking principle (qPRP). Key to our proposal is the presence of quantum interference. Mathematically, this is the statistical deviation between empirical observations and expected values predicted by the Kolmogorovian rule of additivity of probabilities of disjoint events in configurations such that of the double slit experiment. We propose an interpretation of quantum interference in the document ranking scenario, and examine how quantum interference can be effectively estimated for document retrieval. To validate our proposal and to gain more insights about approaches for document ranking, we (1) analyse PRP, qPRP and other ranking approaches, exposing the assumptions underlying their ranking criteria and formulating the conditions for the optimality of the two ranking principles, (2) empirically compare three ranking principles (i. e. PRP, interactive PRP, and qPRP) and two state-of-the-art ranking strategies in two retrieval scenarios, those of ad-hoc retrieval and diversity retrieval, (3) analytically contrast the ranking criteria of the examined approaches, exposing similarities and differences, (4) study the ranking behaviours of approaches alternative to PRP in terms of the kinematics they impose on relevant documents, i. e. by considering the extent and direction of the movements of relevant documents across the ranking recorded when comparing PRP against its alternatives. Our findings show that the effectiveness of the examined ranking approaches strongly depends upon the evaluation context. In the traditional evaluation context of ad-hoc retrieval, PRP is empirically shown to be better or comparable to alternative ranking approaches. However, when we turn to examine evaluation contexts that account for interdependent document relevance (i. e. when the relevance of a document is assessed also with respect to other retrieved documents, as it is the case in the diversity retrieval scenario) then the use of quantum probability theory and thus of qPRP is shown to improve retrieval and ranking effectiveness over the traditional PRP and alternative ranking strategies, such as Maximal Marginal Relevance, Portfolio theory, and Interactive PRP. This work represents a significant step forward regarding the use of quantum theory in information retrieval. It demonstrates in fact that the application of quantum theory to problems within information retrieval can lead to improvements both in modelling power and retrieval effectiveness, allowing the constructions of models that capture the complexity of information retrieval situations. Furthermore, the thesis opens up a number of lines for future research. These include: (1) investigating estimations and approximations of quantum interference in qPRP; (2) exploiting complex numbers for the representation of documents and queries, and; (3) applying the concepts underlying qPRP to tasks other than document ranking.
Resumo:
Methanesulfonic acid (MSA) was compared with sulfuric acid for the conversion of glucose and xylose mixtures to produce levulinic acid and furfural. The interactions of glucose and xylose, the predominant sugars found in biomass, were found to influence product yields with furfural degradation reactions enhanced under higher reactant loadings. Fast heating rates allowed maximal yields (>60 mol%) of levulinic acid and furfural to be achieved under short reaction times. Under the range of conditions examined, sulfuric acid produced a slight increase in levulinic acid yield by 6% (P = 0.02), although there was no significant difference (P = 0.11) between MSA and sulfuric acid in levulinic acid formed from glucose alone. The amount and type of the solid residue is similar between MSA and sulfuric acid. As such, MSA is a suitable alternative because its use minimizes corrosion and disposal issues associated with mineral acid catalysts. The heating value of the residue was 22 MJ/kg implying that it is a suitable source of fuel. On the basis of these results, a two-stage processing strategy is proposed to target high levulinic acid and furfural yields, and other chemical products (e.g., lactic acid, xylitol, acetic acid and formic acid). This will result in full utilization of bagasse components.
Resumo:
The interest in utilising multiple heterogeneous Unmanned Aerial Vehicles (UAVs) in close proximity is growing rapidly. As such, many challenges are presented in the effective coordination and management of these UAVs; converting the current n-to-1 paradigm (n operators operating a single UAV) to the 1-to-n paradigm (one operator managing n UAVs). This paper introduces an Information Abstraction methodology used to produce the functional capability framework initially proposed by Chen et al. and its Level Of Detail (LOD) indexing scale. This framework was validated through comparing the operator workload and Situation Awareness (SA) of three experiment scenarios involving multiple autonomously heterogeneous UAVs. The first scenario was set in a high LOD configuration with highly abstracted UAV functional information; the second scenario was set in a mixed LOD configuration; and the final scenario was set in a low LOD configuration with maximal UAV functional information. Results show that there is a significant statistical decrease in operator workload when a UAV’s functional information is displayed at its physical form (low LOD - maximal information) when comparing to the mixed LOD configuration.
Developing transactive memory systems : theoretical contributions from a social identity perspective
Resumo:
Transactive memory system (TMS) theory explains how expertise is recognized and coordinated in teams. Extending current TMS research from a group information-processing perspective, our article presents a theoretical model that considers TMS development from a social identity perspective. We discuss how two features of communication (quantity and quality) important to TMS development are linked to TMS through the group identification mechanism of a shared common team identity. Informed by social identity theory, we also differentiate between intragroup and intergroup contexts and outline how, in multidisciplinary teams, professional identification and perceived equality of status among professional subgroups have a role to play in TMS development. We provide a theoretical discussion of future research directions aimed at testing and extending our model.
Resumo:
Epithelial mesenchymal transition (EMT) has long been associated with breast cancer cell invasiveness and evidence of EMT processes in clinical samples is growing rapidly. Genome-wide transcriptional profiling of increasingly larger numbers of human breast cancer (HBC) cell lines have confirmed the existence of a subgroup of cell lines (termed Basal B/Mesenchymal) with enhanced invasive properties and a predominantly mesenchymal gene expression signature, distinct from subgroups with predominantly luminal (termed Luminal) or mixed basal/luminal (termed Basal A) features (Neve et al Cancer Cell 2006). Studies providing molecular and cellular analyses of EMT features in these cell lines are summarised, and the expression levels of EMT-associated factors in these cell lines are analysed. Recent clinical studies supporting the presence of EMT-like changes in vivo are summarised. Human breast cancer cell lines with mesenchymal properties continue to hold out the promise of directing us towards key mechanisms at play in the metastatic dissemination of breast cancer.
Resumo:
Purpose Most studies that use either a single exercise session, exercise training, or a cross-sectional design have failed to find a relationship between exercise and plasma lipoprotein(a) [Lp(a)] concentrations. However, a few studies investigating the effects of longer and/or more strenuous exercise have shown elevated Lp(a) concentrations, possibly as an acute-phase reactant to muscle damage. Based on the assumption that greater muscle damage would occur with exercise of longer duration, the purpose of the present study was to determine whether exercise of longer duration would increase Lp(a) concentration and creatine kinase. (CK) activity more than exercise of shorter duration. Methods Ten endurance-trained men (mean +/- SD: age, 27 +/- 6 yr; maximal oxygen consumption [(V)over dotO(2max)], 57 +/- 7 mL(.)kg(-1) min(-1)) completed two separate exercise sessions at 70% (V)over dotO(2max). One session required 900 kcal of energy expenditure (60 +/- 6 min), and the other required 1500 kcal (112 +/- 12 min). Fasted blood samples were taken immediately before (0-pre), immediately after (0-post), 1 d after (1-post), and 2 d after (2-post) each exercise session. Results CK activity increased after both exercise sessions (mean +/- SE; 800 kcal: 0-pre 55 +/- 11, 1-post 168 +/- 64 U(.)L(-1.)min(-1); 1500 kcal: 0-pre 51 +/- 5, 1-post 187 +/- 30, 2-post 123 +/- 19 U(.)L(-1.)min(-1); P < 0.05). However, median Lp(a) concentrations were not altered by either exercise session (800 kcal: 0-pre 5.0 mg(.)dL(-1), 0-post 3.2 mg(.)dL(-1), 1-post 4.0 mg(.)dL(-1), 2-post 3.4 mg(.)dL(-1); 1500 kcal: 0-pre 5.8 mg(.)dL(-1), 0-post 4.3 mg(.)dL(-1), 1-post 3.2 mg(.)dL(-1), 2-post 5.3 mg(.)dL(-1)). In addition, no relationship existed between exercise-induced changes in CK activity and Lp(a) concentration (800 kcal: r = -0.26; 1500 kcal: r = -0.02). Conclusion These results suggest that plasma Lp(a) concentration will not increase in response to minor exercise-induced muscle damage in endurance-trained runners.
Resumo:
Objective To examine the relationship between sports participation and health-related behaviors among high school students. Design Cross-sectional design using data from the 1997 Centers for Disease Control and Prevention Youth Risk Behavior Survey. Participants A nationally representative sample of 14221 US high school students. Main Outcome Measures Prevalence of sports participation among males and females from 3 ethnic groups and its associations with other health behaviors, including diet, tobacco use, alcohol and illegal drug use, sexual activity, violence, and weight loss practices. Results Approximately 70% of male students and 53% of female students reported participating on 1 or more spores teams in school and/or nonschool settings; rates varied substantially by age, sex, and ethnicity. Male sports participants were more likely than male nonparticipants to report fruit and vegetable consumption on the previous day and less likely to report cigarette smelting, cocaine and other illegal drug use, and trying to lose weight. Compared with female nonparticipants, female sports participants were more likely to report consumption of vegetables on the previous day and less likely to report having sexual intercourse in the past 3 months. Among white males and females, several other beneficial health behaviors were associated with sports participation. A few associations with. negative health behaviors were observed in African American and Hispanic subgroups. Conclusion Sports participation is highly prevalent among US high school students, and is associated with numerous positive health behaviors and few negative health behaviors.
Resumo:
The purpose of this study was to determine the threshold of exercise energy expenditure necessary to change blood lipid and lipoprotein concentrations and lipoprotein lipase activity (LPLA) in healthy, trained men. On different days, 11 men (age, 26.7 +/- 6.1 yr; body fat, 11.0 +/- 1.5%) completed four separate, randomly assigned, submaximal treadmill sessions at 70% maximal O-2 consumption. During each session 800, 1,100, 1,300, or 1,500 kcal were expended. Compared with immediately before exercise, high-density lipoprotein cholesterol (HDL-C) concentration was significantly elevated 24 h after exercise (P < 0.05) in the 1,100-, 1,300-, and 1,500-kcal sessions. HDL-C concentration was also elevated (P < 0.05) immediately after and 48 h after exercise in the 1,500-kcal session. Compared with values 24 h before exercise, LPLA. was significantly greater (P < 0.05) 24 h after exercise in the 1,100-, 1,300-, and 1,500-kcal sessions and remained elevated 48 h after exercise in the 1,500-kcal session. These data indicate that, in healthy, trained men, 1,100 kcal of energy expenditure are necessary to elicit increased HDL-C concentrations. These HDL-C changes coincided with increased LPLA.
Resumo:
The purpose of this study was to examine the effect of prolonged exercise oil plasma lipid and lipoprotein concentrations and to identify caloric time-points where changes occurred. Eleven active male Subjects ran oil a treadmill at 70%,, of maximal fitness (VO2max) and expended 6 278.7 kilojoules (Kj) energy (1500 kcal). Blood samples were obtained at the 4185.8 Kj (1000 kcal) time-point during exercise and at each additional 418.6 Kj (100 kcal) expenditure until 6278.7 Kj was expended. After correcting for plasma volume changes, decreases in low-density lipoprotein cholesterol (LDL-C) were observed during exercise at time-points corresponding to 4604.4 and 5441.5 Kj (1100 and 1300 kcal) of energy expenditure, and immediately after exercise. Total cholesterol concentrations decreased significantly at exercise kilojoule expenditures of 4604.4, 5441.5 and 5860.1 (1100, 1300 and 1400 kcal). There were also exercise induced increases in high-density lipoprotein cholesterol (HDL-C) and HDL2-C concentrations immediately after exercise. Although acute lipid and lipoprotein changes are typically reported in the days following exercise, the Current data indicate that some lipoprotein concentrations change during acute exercise. Our data suggest that a threshold of exercise may be necessary to change lipoproteins during exercise. Future work Should identify potential mechanisms (lipoprotein lipase, cholesterol ester transport protein, LDL uptake) that alter lipoprotein concentrations during prolonged exercise.
Resumo:
A major obstacle to 3-dimensional tissue engineering is incorporation of a functional vascular supply to support the expanding new tissue. This is overcome in an in vivo intrinsic vascularization model where an arteriovenous loop (AVL) is placed in a noncollapsible space protected by a polycarbonate chamber. Vascular development and hypoxia were examined from 3 days to 112 days by vascular casting, morphometric, and morphological techniques to understand the model's vascular growth and remodeling parameters for tissue engineering purposes. At 3 days a fibrin exudate surrounded the AVL, providing a scaffold to migrating inflammatory, endothelial, and mesenchymal cells. Capillaries formed between 3 and 7 days. Hypoxia and cell proliferation were maximal at 7 days, followed by a peak in percent vascular volume at 10 days (23.20±3.14% compared with 3.59±2.68% at 3 days, P<0.001). Maximal apoptosis was observed at 112 days. The protected space and spontaneous microcirculatory development in this model suggest it would be applicable for in vivo tissue engineering. A temporal window in a period of intense angiogenesis at 7 to 10 days is optimal for exogenous cell seeding and survival in the chamber, potentially enabling specific tissue outcomes to be achieved.