216 resultados para MULTIDRUG-RESISTANCE
Resumo:
A significant percentage of human breast cancer (HBC) is dependent upon the ovarian hormone estrogen for its onset and progression. The presence or lack of estrogen receptors (ERs) in human breast cancer is an important determinant both of prognosis and of choice of treatment - a poorer prognosis being associated with ER–ve disease. Cell lines established from human breast cancer provide models for breast cancer in various stages of progression (Engel & Young 1978). When grown as tumors in athymic nude mice, these lines represent the major in vivo experimental model for HBC studies (Brünner et al 1987). The ease of both in vitro and in vivo maintenance, the human derivation of the tissue, and the similarities in plasma estrogen levels between ovariectomized nude mice and postmenopausal women (Seibert et al. 1983, Brünner et al. 1986), make the growth of human breast cancer cell lines in nude mice an attractive...
Resumo:
Many breast tumors appear to follow a predictable clinical pattern, being initially responsive to endocrine therapy and to cytotoxic chemotherapy but ultimately exhibiting a phenotype resistant to both modalities. Using the MCF-7 human breast cancer cell line as an example of an 'early' phenotype (estrogen and progesterone receptor positive, steroid responsive, low metastatic potential), we have isolated and characterized a series of hormone-independent but hormone-responsive variants (MIII and MCF7/LCC1). However, these variants remain responsive to both antiestrogens and cytotoxic drugs (methotrexate and colchicine). MIII and MCF7/LCCl cells appear to mimic some of the critical aspects of the early progression to a more aggressive phenotype. An examination of the phenotype of these cells suggests that some hormone-independent breast cancer cells are derived from hormone-dependent parental cells. The development of a hormone-independent phenotype can arise independently of acquisition of a cytotoxic drug resistant phenotype.
Resumo:
Among the processes contributing to the progressive acquisition of the highly malignant phenotype in breast cancer are ovarian-independent growth, antioestrogen resistance and increased metastatic potential. We have previously observed that increased invasiveness and development of ovarian-independent growth occur independently. In an attempt to define the inter-relationships between these processes further, we have compared the phenotypes of ovarian-independent, invasive and antioestrogen-resistant sublines of the ovarian-dependent human breast cancer cell line MCF-7. Cells acquiring ovarian-independent growth can retain sensitivity to anti-oestrogens. One clone of MCF-7 cells selected for stable antioestrogen resistance has become non-tumorigenic but its invasive potential remains unaltered. Thus, acquisitions of some characteristics of the progressed phenotype can occur independently. This phenomenon of independent parameters in phenotypic progression could partly explain the considerable intra- and intertumour heterogeneity characteristic of breast tumours.
Resumo:
One DDT-contaminated soil and two uncontaminated soils were used to enumerate DDT-resistant microbes (bacteria, actinomycetes and fungi) by using soil dilution agar plates in media either with 150 μg DDT ml -1 or without DDT at different temperatures (25, 37 and 55°C). Microbial populations in this study were significantly (p<0.001) affected by DDT in the growth medium. However, the numbers of microbes in long-term contaminated and uncontaminated soils were similar, presumably indicating that DDT-resistant microbes had developed over a long time exposure. The tolerance of isolated soil microbes to DDT varied in the order fungi>actinomycetes>bacteria. Bacteria from contaminated soil were more resistant to DDT than bacteria from uncontaminated soils. Microbes isolated at different temperatures also demonstrated varying degrees of DDT resistance. For example, bacteria and actinomycetes isolated at all incubation temperatures were sensitive to DDT. Conversely fungi isolated at all temperatures were unaffected by DDT.
Resumo:
Bioremediation is a potential option to treat 1, 1, 1-trichloro-2, 2 bis (4-chlorophenyl) ethane (DDT) contaminated sites. In areas where suitable microbes are not present, the use of DDT resistant microbial inoculants may be necessary. It is vital that such inoculants do not produce recalcitrant breakdown products e.g. 1, 1-dichloro-2, 2-bis (4-chlorophenyl) ethylene (DDE). Therefore, this work aimed to screen DDT-contaminated soil and compost materials for the presence of DDT-resistant microbes for use as potential inoculants. Four compost amended soils, contaminated with different concentrations of DDT, were used to isolate DDT-resistant microbes in media containing 150 mg I -1 DDT at three temperatures (25, 37 and 55°C). In all soils, bacteria were more sensitive to DDT than actinomycetes and fungi. Bacteria isolated at 55°C from any source were the most DDT sensitive. However DDT-resistant bacterial strains showed more promise in degrading DDT than isolated fungal strains, as 1, 1-dichloro 2, 2-bis (4-chlorophenyl) ethane (DDD) was a major bacterial transformation product, while fungi tended to produce more DDE. Further studies on selected bacterial isolates found that the most promising bacterial strain (Bacillus sp. BHD-4) could remove 51% of DDT from liquid culture after 7 days growth. Of the amount transformed, 6% was found as DDD and 3% as DDE suggesting that further transformation of DDT and its metabolites occurred.
Resumo:
Motivated by the analysis of the Australian Grain Insect Resistance Database (AGIRD), we develop a Bayesian hurdle modelling approach to assess trends in strong resistance of stored grain insects to phosphine over time. The binary response variable from AGIRD indicating presence or absence of strong resistance is characterized by a majority of absence observations and the hurdle model is a two step approach that is useful when analyzing such a binary response dataset. The proposed hurdle model utilizes Bayesian classification trees to firstly identify covariates and covariate levels pertaining to possible presence or absence of strong resistance. Secondly, generalized additive models (GAMs) with spike and slab priors for variable selection are fitted to the subset of the dataset identified from the Bayesian classification tree indicating possibility of presence of strong resistance. From the GAM we assess trends, biosecurity issues and site specific variables influencing the presence of strong resistance using a variable selection approach. The proposed Bayesian hurdle model is compared to its frequentist counterpart, and also to a naive Bayesian approach which fits a GAM to the entire dataset. The Bayesian hurdle model has the benefit of providing a set of good trees for use in the first step and appears to provide enough flexibility to represent the influence of variables on strong resistance compared to the frequentist model, but also captures the subtle changes in the trend that are missed by the frequentist and naive Bayesian models.
Resumo:
Intense resistance exercise causes mechanical loading of skeletal muscle, followed by muscle adaptation. Chemotactic factors likely play an important role in these processes. Purpose We investigated the time course of changes in the expression and tissue localization of several key chemotactic factors in skeletal muscle during the early phase of recovery following resistance exercise. Methods Muscle biopsy samples were obtained from vastus lateralis of eight untrained men (22+-0.5 yrs) before and 2, 4 and 24 h after three sets of leg press, squat and leg extension at 80% 1 RM. Results Monocyte chemotactic protein-1 (95×), interleukin-8 (2,300×), IL-6 (317×), urokinase-type plasminogen activator (15×), vascular endothelial growth factor (2×) and fractalkine (2.5×) mRNA was significantly elevated 2 h post-exercise. Interleukin-8 (38×) and interleukin-6 (58×) protein was also significantly elevated 2 h post-exercise, while monocyte chemotactic protein-1 protein was significantly elevated at 2 h (22×) and 4 h (21×) post-exercise. Monocyte chemotactic protein-1 and interleukin-8 were expressed by cells residing in the interstitial space between muscle fibers and, in some cases, were co-localized with CD68+ macrophages, PAX7+ satellite cells and blood vessels. However, the patterns of staining were inconclusive and not consistent. Conclusion In conclusion, resistance exercise stimulated a marked increase in the mRNA and protein expression of various chemotactic factors in skeletal muscle. Myofibers were not the dominant source of these factors. These findings suggest that chemotactic factors regulate remodeling/adaptation of skeletal muscle during the early phase of recovery following resistance exercise.
Resumo:
Controlling the electrical resistance of granular thin films is of great importance for many applications, yet a full understanding of electron transport in such films remains a major challenge. We have studied experimentally and by model calculations the temperature dependence of the electrical resistance of ultrathin gold films at temperatures between 2 K and 300 K. Using sputter deposition, the film morphology was varied from a discontinuous film of weakly coupled meandering islands to a continuous film of strongly coupled coalesced islands. In the weak-coupling regime, we compare the regular island array model, the cotunneling model, and the conduction percolation model with our experimental data. We show that the tunnel barriers and the Coulomb blockade energies are important at low temperatures and that the thermal expansion of the substrate and the island resistance affect the resistance at high temperatures. At low temperatures our experimental data show evidence for a transition from electron cotunneling to sequential tunneling but the data can also be interpreted in terms of conduction percolation. The resistivity and temperature coefficient of resistance of the meandering gold islands are found to resemble those of gold nanowires. We derive a simple expression for the temperature at which the resistance changes from non-metal-like behavior into metal-like behavior. In the case of strong island coupling, the total resistance is solely determined by the Ohmic island resistance.
Resumo:
This paper presents the details of research undertaken on the development of an energy based time equivalent approach for light gauge steel frame (LSF) walls. This research utilized an energy based time equivalent approach to obtain the fire resistance ratings (FRR) of LSF walls exposed to realistic design fires with respect to standard fire exposure [1]. It is based on the equal area concept of fire severity and relates to the amount of energy transferred to the member. The proposed method was used to predict the fire resistance of single and double plasterboard lined and externally insulated LSF walls. The predicted fire resistance ratings were compared with the results from finite element analyses and fire design rules for three different wall configurations. This paper presents the review of the available time equivalent approaches and the development of energy based time equivalent approach for the prediction of fire resistance ratings of LSF walls exposed to realistic design fires.
Resumo:
BRAF is a major oncoprotein and oncogenic mutations in BRAF are found in a significant number of cancers, including melanoma, thyroid cancer, colorectal cancer and others. Consequently, BRAF inhibitors have been developed as treatment options for cancers with BRAF mutations which have shown some success in improving patient outcomes in clinical trials. Development of resistance to BRAF kinase inhibitors is common, however, and overcoming this resistance is an area of significant concern for clinicians, patients and researchers alike. In this review, we identify the mechanisms of BRAF kinase inhibitor resistance and discuss the implications for strategies to overcome this resistance in the context of new approaches such as multi-kinase targeted therapies and emerging RNA interference based technologies.
Resumo:
With ever-increasing share of power electronic loads constant power instability is becoming a significant issue in microgrids, especially when they operate in the islanding mode. Transient conditions like resistive load-shedding or sudden increase of constant power loads (CPL) might destabilize the whole system. Modeling and stability analysis of AC microgrids with CPLs have already been discussed in literature. However, no effective solutions are provided to stabilize this kind of system. Therefore, this paper proposes a virtual resistance based active damping method to eliminate constant power instability in AC microgrids. Advantages and limitations of the proposed method are also discussed in detail. Simulation results are presented to validate the proposed active damping solution.
Resumo:
Artemisinin (ART) based combination therapy (ACT) is used as the first line treatment of uncomplicated falciparum malaria in over 100 countries and is the cornerstone of malaria control and elimination programs in these areas. However, despite the high potency and rapid parasite killing action of ART derivatives there is a high rate of recrudescence associated with ART monotherapy and recrudescence is not uncommon even when ACT is used. Compounding this problem are reports that some parasites in Cambodia, a known foci of drug resistance, have decreased in vivo sensitivity to ART. This raises serious concerns for the development of ART resistance in the field even though no major phenotypic and genotypic changes have yet been identified in these parasites. In this article we review available data on the characteristics of ART, its effects on Plasmodium falciparum parasites and present a hypothesis to explain the high rate of recrudescence associated with this potent class of drugs and the current enigma surrounding ART resistance.
Resumo:
Chloroquine-resistant Plasmodium falciparum was highly prevalent in Hainan, China, in the 1970s. Twenty-five years after cessation of chloroquine therapy, the prevalence of P. falciparum wild-type Pfcrt alleles has risen to 36% (95% confidence interval, 22.1 to 52.4%). The diverse origins of wild-type alleles indicate that there was no genetic bottleneck caused by high chloroquine resistance.
Resumo:
Bulk heterojunction organic solar cells based on poly[4,7-bis(3- dodecylthiophene-2-yl) benzothiadiazole-co-benzothiadiazole] and [6,6]-phenyl C71-butyric acid methyl ester are investigated. A prominent kink is observed in the fourth quadrant of the current density-voltage (J-V) response. Annealing the active layer prior to cathode deposition eliminates the kink. The kink is attributed to an extraction barrier. The J-V response in these devices is well described by a power law. This behavior is attributed to an imbalance in charge carrier mobility. An expected photocurrent for the device displaying a kink in the J-V response is determined by fitting to a power law. The difference between the expected and measured photocurrent allows for the determination of a voltage drop within the device. Under simulated 1 sun irradiance, the peak voltage drop and contact resistance at short circuit are 0.14 V and 90 Ω, respectively. © 2012 American Institute of Physics.