323 resultados para Integrated Buck-Boost Inverters
Resumo:
A fundamental aspect of work integrated learning (WIL) is the development of professional competence, the ability of students to perform in the work place. Alignment theory therefore suggests that the assessment of WIL should include an assessment of students’ demonstration of professional competence in the workplace. The assessment of professional competence in WIL is, however, problematic. It may be impractical for the academic supervisor to directly assess professional competence if there is a large number of students in external placements. If evidence of professional competence is provided by the student, the student’s ability to articulate his or her own capabilities will interfere with the validity of the assessment. If evidence of professional competency is provided by the supervisor then the assessment is heavily dependent on the individual supervisor and may be unreliable. This paper will examine the literature relating to the assessment of professional competence in WIL. The paper will be informed by the author’s experience in coordinating a WIL subject in an undergraduate law course. It will recommend that a mix of evidence provided by the student, the workplace supervisor and the academic supervisor should be used to assess professional competence in WIL.
Resumo:
Motivation is a major driver of project performance. Despite team member ability to deliver successful project outcomes if they are not positively motivated to pursue joint project goals, then performance will be constrained. One approach to improving the motivation of project organizations is by offering a financial reward for the achievement of set performance standards above a minimum required level. However, little investigation has been undertaken into the features of successful incentive systems as a part of an overall delivery strategy. With input from organizational management literature, and drawing on the literature covering psychological and economic theories of motivation, this paper presents an integrated framework that can be used by project organizations to assess the impact of financial reward systems on motivation in construction projects. The integrated framework offers four motivation indicators which reflect key theoretical concepts across both psychological and economic disciplines. The indicators are: (1) Goal Commitment, (2) Distributive Justice, (3) Procedural Justice, and (4) Reciprocity. The paper also interprets the integrated framework against the results of a successful Australian social infrastructure project case study and identifies key learning’s for project organizations to consider when designing financial reward systems. Case study results suggest that motivation directed towards the achievement of incentive goals is influenced not only by the value placed on the financial reward for commercial benefit, but also driven by the strength of the project initiatives that encourage just and fair dealings, supporting the establishment of trust and positive reciprocal behavior across a project team. The strength of the project relationships was found to be influenced by how attractive the achievement of the goal is to the incentive recipient and how likely they were to push for the achievement of the goal. Interestingly, findings also suggested that contractor motivation is also influenced by the fairness of the performance measurement process and their perception of the trustworthiness and transparency of their client. These findings provide the basis for future research on the impact of financial reward systems on motivation in construction projects. It is anticipated that such research will shed new light on this complex topic and further define how reward systems should be designed to promote project team motivation. Due to the unique nature of construction projects with high levels of task complexity and interdependence, results are expected to vary in comparison to previous studies based on individuals or single-entity organizations.
Resumo:
In this paper, we present a method for the recovery of position and absolute attitude (including pitch, roll and yaw) using a novel fusion of monocular Visual Odometry and GPS measurements in a similar manner to a classic loosely-coupled GPS/INS error state navigation filter. The proposed filter does not require additional restrictions or assumptions such as platform-specific dynamics, map-matching, feature-tracking, visual loop-closing, gravity vector or additional sensors such as an IMU or magnetic compass. An observability analysis of the proposed filter is performed, showing that the scale factor, position and attitude errors are fully observable under acceleration that is non-parallel to velocity vector in the navigation frame. The observability properties of the proposed filter are demonstrated using numerical simulations. We conclude the article with an implementation of the proposed filter using real flight data collected from a Cessna 172 equipped with a downwards-looking camera and GPS, showing the feasibility of the algorithm in real-world conditions.
Resumo:
To sustain an ongoing rapid growth of video information, there is an emerging demand for a sophisticated content-based video indexing system. However, current video indexing solutions are still immature and lack of any standard. This doctoral consists of a research work based on an integrated multi-modal approach for sports video indexing and retrieval. By combining specific features extractable from multiple audio-visual modalities, generic structure and specific events can be detected and classified. During browsing and retrieval, users will benefit from the integration of high-level semantic and some descriptive mid-level features such as whistle and close-up view of player(s).
Resumo:
In Australia, it has been increasingly accepted that sustainability needs to be at the top of the agenda when contemplating infrastructure development. In practice however, many companies struggle to find effective ways to embrace sustainable ideas and implement them in real projects beyond minimum compliance. One of the reasons is the lack of underpinning knowledge and evidence to demonstrate and measure the linkage between sustainability implementations and the relevant outcomes. This is compounded by the fact that very often there are no common understandings between the stakeholders on sustainability and there is a big divide between research advancement and real-life applications. Therefore it is both feasible and timely to develop and expand the body of sustainability knowledge on infrastructure development and investigate better ways of communicating with and managing it within the infrastructure sector. Although knowledge management (KM) is a relatively new and emerging discipline, it has shown its value and promise in existing applications in the construction industry. Considering the existing KM mechanisms and tools employed in practice, this research is aimed at establishing a specific KM approach to facilitate sustainability knowledge identification, acquisition, sharing, maintenance and application within the infrastructure sector, and promote integrated decision-making for sustainable infrastructure development. A triangulation of questionnaire survey, semi-structured interviews and case studies was employed in this research to collect required qualitative and quantitative data. The research studied the unique characteristics of the infrastructure sector, the nature of sustainability knowledge, and evaluated and validated the critical elements, key processes, and priority issues of KM for the Australian infrastructure sector. A holistic KM framework was developed to set the overall context for managing sustainability knowledge in the infrastructure sector by outlining (1) the main aims and outcomes of managing sustainability knowledge, (2) the key knowledge activities, (3) effective KM strategies and instruments, and (4) KM enablers. Because of the highly project-oriented nature of the infrastructure sector, knowledge can only add value when it is being used in real projects. Implementation guidelines were developed to help the industry practitioners and project teams to apply sustainability knowledge and implement KM in infrastructure project scenarios. This research provides the Australian infrastructure sector with tools to better understand KM, helps the industry practitioners to prioritize attention on relevant sustainability issues, and recommends effective practices to manage sustainability knowledge, especially in real life implementation of infrastructure projects.
Resumo:
This article presents a two-stage analytical framework that integrates ecological crop (animal) growth and economic frontier production models to analyse the productive efficiency of crop (animal) production systems. The ecological crop (animal) growth model estimates "potential" output levels given the genetic characteristics of crops (animals) and the physical conditions of locations where the crops (animals) are grown (reared). The economic frontier production model estimates "best practice" production levels, taking into account economic, institutional and social factors that cause farm and spatial heterogeneity. In the first stage, both ecological crop growth and economic frontier production models are estimated to calculate three measures of productive efficiency: (1) technical efficiency, as the ratio of actual to "best practice" output levels; (2) agronomic efficiency, as the ratio of actual to "potential" output levels; and (3) agro-economic efficiency, as the ratio of "best practice" to "potential" output levels. Also in the first stage, the economic frontier production model identifies factors that determine technical efficiency. In the second stage, agro-economic efficiency is analysed econometrically in relation to economic, institutional and social factors that cause farm and spatial heterogeneity. The proposed framework has several important advantages in comparison with existing proposals. Firstly, it allows the systematic incorporation of all physical, economic, institutional and social factors that cause farm and spatial heterogeneity in analysing the productive performance of crop and animal production systems. Secondly, the location-specific physical factors are not modelled symmetrically as other economic inputs of production. Thirdly, climate change and technological advancements in crop and animal sciences can be modelled in a "forward-looking" manner. Fourthly, knowledge in agronomy and data from experimental studies can be utilised for socio-economic policy analysis. The proposed framework can be easily applied in empirical studies due to the current availability of ecological crop (animal) growth models, farm or secondary data, and econometric software packages. The article highlights several directions of empirical studies that researchers may pursue in the future.
Resumo:
The potential of distributed reactive power control to improve the voltage profile of radial distribution feeders has been reported in literature by few authors. However, the multiple inverters injecting or absorbing reactive power across a distribution feeder may introduce control interactions and/or voltage instability. Such controller interactions can be alleviated if the inverters are allowed to operate on voltage droop. First, the paper demonstrates that a linear shallow droop line can maintain the steady state voltage profile close to reference, up to a certain level of loading. Then, impacts of the shallow droop line control on line losses and line power factors are examined. Finally, a piecewise linear droop line which can achieve reduced line losses and close to unity power factor at the feeder source is proposed.
Resumo:
This special issue of the Journal of Urban Technology brings together five articles that are based on presentations given at the Street Computing workshop held on 24 November 2009 in Melbourne in conjunction with the Australian Computer-Human Interaction conference (OZCHI 2009). Our own article introduces the Street Computing vision and explores the potential, challenges and foundations of this research vision. In order to do so, we first look at the currently available sources of information and discuss their link to existing research efforts. Section 2 then introduces the notion of Street Computing and our research approach in more detail. Section 3 looks beyond the core concept itself and summarises related work in this field of interest.
Resumo:
This paper investigates the use of visual artifacts to represent a complex adaptive system (CAS). The integrated master schedule (IMS) is one of those visuals widely used in complex projects for scheduling, budgeting, and project management. In this paper, we discuss how the IMS outperforms the traditional timelines and acts as a ‘multi-level and poly-temporal boundary object’ that visually represents the CAS. We report the findings of a case study project on the way the IMS mapped interactions, interdependencies, constraints and fractal patterns in a complex project. Finally, we discuss how the IMS was utilised as a complex boundary object by eliciting commitment and development of shared mental models, and facilitating negotiation through the layers of multiple interpretations from stakeholders.