346 resultados para Industrial design.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper examines whether recent innovation in market design can address persistent problems of housing choice and affordability in the inner and middle suburbs of Australian cities. Australia's ageing middle suburbs are the result of a low density and highly car-dependent garden city greenfield approach to planning that failed to consider possible future resource or environmental constraints on urban development (Newton et al., 2011). Described as 'greyfield' sites in contrast to greenfield (signalling the change from rural to urban land use) and 'brownfield' (being the transformation of former industrial use to mixed use, including housing), intensification of development in such areas is expected to deliver positive social, economic and environmental outcomes (Trubka et al., 2008; Gurran et al., 2006; Newton et al., 2011; Goodman et al., 2010). Yet despite broad policy consensus progress remains elusive (Major Cities Unit, 2010). In this paper we argue that the application of market design theory, specifically through the internet-based coordination of market information, offers a new policy approach and practical measures to address these problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Light gauge steel frame wall systems are commonly used in industrial and commercial buildings, and there is a need for simple fire design rules to predict their load capacities and fire resistance ratings. During fire events, the light gauge steel frame wall studs are subjected to non-uniform temperature distributions that cause thermal bowing, neutral axis shift and magnification effects and thus resulting in a combined axial compression and bending action on the studs. In this research, a series of full-scale fire tests was conducted first to evaluate the performance of light gauge steel frame wall systems with eight different wall configurations under standard fire conditions. Finite element models of light gauge steel frame walls were then developed, analysed under transient and steady-state conditions and validated using full-scale fire tests. Using the results from fire tests and finite element analyses, a detailed investigation was undertaken into the prediction of axial compression strength and failure times of light gauge steel frame wall studs in standard fires using the available fire design rules based on Australian, American and European standards. The results from both fire tests and finite element analyses were used to investigate the ability of these fire design rules to include the complex effects of non-uniform temperature distributions and their accuracy in predicting the axial compression strength of wall studs and the failure times. Suitable modifications were then proposed to the fire design rules. This article presents the details of this investigation on the fire design rules of light gauge steel frame walls and the results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wireless networked control systems (WNCSs) have been widely used in the areas of manufacturing and industrial processing over the last few years. They provide real-time control with a unique characteristic: periodic traffic. These systems have a time-critical requirement. Due to current wireless mechanisms, the WNCS performance suffers from long time-varying delays, packet dropout, and inefficient channel utilization. Current wirelessly networked applications like WNCSs are designed upon the layered architecture basis. The features of this layered architecture constrain the performance of these demanding applications. Numerous efforts have attempted to use cross-layer design (CLD) approaches to improve the performance of various networked applications. However, the existing research rarely considers large-scale networks and congestion network conditions in WNCSs. In addition, there is a lack of discussions on how to apply CLD approaches in WNCSs. This thesis proposes a cross-layer design methodology to address the issues of periodic traffic timeliness, as well as to promote the efficiency of channel utilization in WNCSs. The design of the proposed CLD is highlighted by the measurement of the underlying network condition, the classification of the network state, and the adjustment of sampling period between sensors and controllers. This period adjustment is able to maintain the minimally allowable sampling period, and also maximize the control performance. Extensive simulations are conducted using the network simulator NS-2 to evaluate the performance of the proposed CLD. The comparative studies involve two aspects of communications, with and without using the proposed CLD, respectively. The results show that the proposed CLD is capable of fulfilling the timeliness requirement under congested network conditions, and is also able to improve the channel utilization efficiency and the proportion of effective data in WNCSs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper considers the design of a radial flux permanent magnet iron less core brushless DC motor for use in an electric wheel drive with an integrated epicyclic gear reduction. The motor has been designed for a continuous output torque of 30 Nm and peak rating of 60 Nm with a maximum operating speed of 7000 RPM. In the design of brushless DC motors with a toothed iron stator the peak air-gap magnetic flux density is typically chosen to be close to that of the remanence value of the magnets used. This paper demonstrates that for an ironless motor the optimal peak air-gap flux density is closer to the maximum energy product of the magnets used. The use of a radial flux topology allows for high frequency operation and can be shown to give high specific power output while maintaining a relatively low magnet mass. Two-dimensional finite element analysis is used to predict the air-gap flux density. The motor design is based around commonly available NdFeB bar magnet size

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper considers the design of a radial flux permanent magnet ironless core brushless DC motor for use in an electric wheel drive with an integrated epicyclic gear reduction. The motor has been designed for a continuous output torque of 30 Nm and peak rating of 60 Nm with a maximum operating speed of 7000 RPM. In the design of brushless DC motors with a toothed iron stator the peak air-gap magnetic flux density is typically chosen to be close to that of the remanence value of the magnets used. This paper demonstrates that for an ironless motor the optimal peak air-gap flux density is closer to the maximum energy product of the magnets used. The use of a radial flux topology allows for high frequency operation and can be shown to give high specific power output while maintaining a relatively low magnet mass. Two-dimensional finite element analysis is used to predict the airgap flux density. The motor design is based around commonly available NdFeB bar magnet size

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wireless networked control systems (WNCSs) have been increasingly deployed in industrial applications. As they require timely data packet transmissions, it is difficult to make efficient use of the limited channel resources, particularly in contention based wireless networks in the layered network architecture. Aiming to maintain the WNCSs under critical real-time traffic condition at which the WNCSs marginally meet the real-time requirements, a cross-layer design (CLD) approach is presented in this paper to adaptively adjust the control period to achieve improved channel utilization while still maintaining effective and timely packet transmissions. The effectiveness of the proposed approach is demonstrated through simulation studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we address the control design problem of positioning of over-actuated marine vehicles with control allocation. The proposed design is based on a combined position and velocity loops in a multi-variable anti-windup implementation together with a control allocation mapping. The vehicle modelling is considered with appropriate simplifications related to low-speed manoeuvring hydrodynamics and vehicle symmetry. The control design is considered together with a control allocation mapping. We derive analytical tuning rules based on requirements of closed-loop stability and performance. The anti- windup implementation of the controller is obtained by mapping the actuator-force constraint set into a constraint set for the generalized forces. This approach ensures that actuation capacity is not violated by constraining the generalized control forces; thus, the control allocation is simplified since it can be formulated as an unconstrained problem. The mapping can also be modified on-line based on actuator availability to provide actuator-failure accommodation. We provide a proof of the closed-loop stability and illustrate the performance using simulation scenarios for an open-frame underwater vehicle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Whole System Design is increasingly being seen as one of the most cost effective ways to both increase the productivity and reduce the negative environmental impacts of an engineered system. A focus on design is critical, as the output from this stage of the project locks-in most of the economic and environmental performance of the designed system throughout its life, which can span from a few years to many decades. Indeed, it is now widely acknowledged that all designers – particularly engineers, architects and industrial designers – need to be able to understand and implement a whole system design approach. This book provides a clear design methodology, based on leading efforts in the field, and is supported by worked examples that demonstrate how advances in energy, materials and water productivity can be achieved through applying an integrated approach to sustainable engineering. Chapters 1–5 outline the approach and explain how it can be implemented to enhance the established Systems Engineering framework. Chapters 6–10 demonstrate, through detailed worked examples, the application of the approach to industrial pumping systems, passenger vehicles, electronics and computer systems, temperature control of buildings, and domestic water systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design of society’s major infrastructure systems are generally based on anthropogenic learnings and seldom encapsulate learning from nature. This results from a pervading attitude of superiority of human-designed systems, particularly since the Industrial Revolution. Problems created by such behaviours have previously not been thought to present a serious threat to humanity. However, many built environment professionals are now reconsidering the impact of such systems on the environment and their vulnerability to issues such as climate change. This paper presents an approach to delivering sustainable urban infrastructure that addresses 21st Century needs by emulating natural form, function and process - biomimicry – in infrastructure design. The analysis reveals the context for infrastructure change and the need for sustainable solutions, detailing the current inquiry into biomimicry informed design and highlighting potential applications from literature that demonstrate precedence for nature to inspire the design of urban infrastructure, in particular water and energy systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New technical and procedural interventions are less likely to be adopted in industry, unless they are smoothly integrated into the existing practices of professionals. In this paper, we provide a case study of the use of ethnographic methods for studying software bug-fixing activities at an industrial engineering conglomerate. We aimed at getting an in-depth understanding of software developers' everyday practices in bug-fixing related projects and in turn inform the design of novel productivity tools. The use of ethnography has allowed us to look at the social side of software maintenance practices. In this paper, we highlight: 1) organizational issues that influence bug-fixing activities; 2) social role of bug tracking systems, and; 3) social issues specific to different phases of bug-fixing activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

LiteSteel beam (LSB) is a cold-formed steel hollow flange channel section produced using a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. It is commonly used as floor joists and bearers in residential, industrial and commercial buildings. Design of the LSB is governed by the Australian cold-formed steel structures code, AS/NZS 4600. Due to the geometry of the LSB, as well as its unique residual stress characteristics and initial geometric imperfections resultant of manufacturing processes, currently available design equations for common cold-formed sections are not directly applicable to the LSB. Many research studies have been carried out to evaluate the behaviour and design of LSBs subject to pure bending actions and predominant shear actions. To date, however, no investigation has been conducted into the strength of LSB sections under combined bending and shear actions. Hence experimental and numerical studies were conducted to assess the combined bending and shear behaviour of LSBs. Finite element models of LSBs were developed to simulate their combined bending and shear behaviour and strength of LSBs. They were then validated by comparing the results with available experimental test results and used in a detailed parametric study. The results from experimental and finite element analyses were compared with current AS/NZS 4600 and AS 4100 design rules. Both experimental and numerical studies show that the AS/NZS 4600 design rule based on circular interaction equation is conservative in predicting the combined bending and shear capacities of LSBs. This paper presents the details of the numerical studies of LSBs and the results. In response to the inadequacies of current approaches to designing LSBs for combined bending and shear, two lower bound design equations are proposed in this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Light gauge steel roofing systems made of thin profiled roof sheeting and battens are used commonly in residential, industrial and commercial buildings. Their critical design load combination is that due to wind uplift forces that occur during high wind events such as tropical cyclones and thunderstorms. However, premature local failures at their screw connections have been a concern for many decades since cyclone Tracy that devastated Darwin in 1974. Extensive research that followed cyclone Tracy on the pull-through and pull-out failures of roof sheeting to batten connections has significantly improved the safety of roof sheeting. However, this has made the batten to rafter/truss connection the weakest, and recent wind damage investigations have shown the failures of these connections and the resulting loss of entire roof structures. Therefore an experimental research program using both small scale and full scale air-box tests is currently under way to investigate the pull-through failures of thin-walled steel battens under high wind uplift forces. Tests have demonstrated that occurrence of pull-through failures in the bottom flanges of steel batttens and the need to develop simple test and design methods as a function of many critical parameters such as steel batten geometry, thickness and grade, screw fastener sizes and other fastening details. This paper presents the details of local failures that occur in light fauge roofing systems, a review of the current design and test methods for steel battens and associated short comings, and the test results obtained to date on pull-through failures of battens from small scale and full scale tests. Finally, it proposes the use of suitable small scale test methods that can be used by both researchers and manufacturers of such screw-fastened light gauge steel batten systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A robust and reliable grid power interface system for wind turbines using a permanent-magnet synchronous generator (PMSG) is proposed in this paper, where an integration of a generator-side three-switch buck-type rectifier and a grid-side Z-source inverter is employed as a bridge between the generator and the grid. The modulation strategy for the proposed topology is developed from space-vector modulation and Z-source network operation principles. Two PMSG control methods, namely, unity-power-factor control and rotor-flux-orientation control (Id = 0), are studied to establish an optimized control scheme for the generator-side three-switch buck-type rectifier. The system control scheme decouples active- and reactive-power control through voltage-oriented control and optimizes PMSG control for the grid- and generator-side converters independently. Maximum power point tracking is implemented by adjusting the shoot-through duty cycles of the Z-source network. The design considerations of the passive components are also provided. The performances and practicalities of the designed architecture have been verified by simulations and experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

These lecture notes describe the use and implementation of a framework in which mathematical as well as engineering optimisation problems can be analysed. The foundations of the framework and algorithms described -Hierarchical Asynchronous Parallel Evolutionary Algorithms (HAPEAs) - lie upon traditional evolution strategies and incorporate the concepts of a multi-objective optimisation, hierarchical topology, asynchronous evaluation of candidate solutions , parallel computing and game strategies. In a step by step approach, the numerical implementation of EAs and HAPEAs for solving multi criteria optimisation problems is conducted providing the reader with the knowledge to reproduce these hand on training in his – her- academic or industrial environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A toolkit designed to facilitate greater understanding of the role of fashion design in society and the value of design thinking skills in solving wicked challenges. The program uses fashion as a catalyst to provide a framework for young people to address a systemic health issue (skin cancer), and in doing so, obtain a more acute awareness of the sun safety message (alternative to a scare campaign.